70分做法:

先预处理出所有点的最近和次近(O(n^2)一遍就OK)

然后暴力求出每个解(O(nm))

//By SiriusRen
#include <cstdio>
#include <cstring>
#include <algorithm>
#define inf 0x3fffffff
using namespace std;
int n,x,rech=0x3fffffff,rec,s,m;
double ans=0x3fffffff;
struct Path{int to,weight,to2,weight2;void init(){weight=inf,weight2=inf,to=-1,to2=-1;}}path[100050];
struct Node{int position,height;}node[100050];
bool cmp(Node a,Node b){return a.height<b.height;}
int main()
{
scanf("%d",&n);
for(int i=1;i<=n;i++){
node[i].position=i;
scanf("%d",&node[i].height);
}
for(int i=1;i<=n;i++){
path[i].init();
for(int j=i+1;j<=n;j++){
if(path[i].weight2>abs(node[j].height-node[i].height)){
path[i].weight2=abs(node[j].height-node[i].height);
path[i].to2=node[j].position;
}
else if(path[i].weight2==abs(node[j].height-node[i].height)&&node[j].height<node[i].height){
path[i].to2=node[j].position;
}
if(path[i].weight2<path[i].weight){
swap(path[i].weight2,path[i].weight);
swap(path[i].to,path[i].to2);
}
else if(path[i].weight2==path[i].weight&&node[j].height<node[i].height){
swap(path[i].to,path[i].to2);
}
}
}
scanf("%d",&x);
for(int i=1;i<=n;i++){
int wei1=0,wei2=0,f=1;
for(int j=i;;){
if(f){
if(wei1+wei2+path[j].weight2<=x)
wei2+=path[j].weight2;
else break;
j=path[j].to2;
}
else{
if(wei1+wei2+path[j].weight<=x)
wei1+=path[j].weight;
else break;
j=path[j].to;
}
f^=1;
}
if(wei1&&(ans>1.0*wei2/wei1||(ans==1.0*wei2/wei1&&rech<node[i].height))){
ans=1.0*wei2/wei1;
rec=i;
rech=node[i].height;
}
}
printf("%d\n",rec);
scanf("%d",&m);
for(int i=1;i<=m;i++){
scanf("%d%d",&s,&x);
int wei1=0,wei2=0,f=1;
for(int j=s;;){
if(f){
if(wei1+wei2+path[j].weight2<=x)
wei2+=path[j].weight2;
else break;
j=path[j].to2;
}
else{
if(wei1+wei2+path[j].weight<=x)
wei1+=path[j].weight;
else break;
j=path[j].to;
}
f^=1;
}
printf("%d %d\n",wei2,wei1);
}
}

100分做法:

先用set 从后向前插入 ,取出左边两个点和右边两个点(如果有的话),排个序。

O(nlogn)求出最近和次近。

然后呢 用倍增求距离

g[i][j]表示从i出发走2^j轮到的地方

f[i][j][0]表示从i出发走2^j轮A走了多少

f[i][j][1]表示从i出发走2^j轮B走了多少

预处理出走一轮到哪儿

g[i][0]=edge[edge[i].to2].to;

f[i][0][0]=edge[i].weight2;

f[i][0][1]=edge[edge[i].to2].weight;



倍增就好了…

g[i][j]=g[g[i][j-1]][j-1];

f[i][j][0]=f[g[i][j-1]][j-1][0]+f[i][j-1][0];

f[i][j][1]=f[g[i][j-1]][j-1][1]+f[i][j-1][1];

//By SiriusRen
#include <set>
#include <cstdio>
#include <cstring>
#include <algorithm>
#define int long long
using namespace std;
int n,xx,x,m,g[100050][20],f[100050][20][2],rech,rec;
double ans=0x3fffffff;
struct Node{int height,position;}node[100050];
struct Node2{int height,Short,position;}jy;
struct Edge{int to,to2,weight,weight2;void init(){weight=weight2=0x3fffffff;}}edge[100050];
set<Node>s;set<Node2>p;
bool operator < (Node a,Node b){return a.height<b.height;}
bool operator < (Node2 a,Node2 b){
if(a.Short!=b.Short)return a.Short<b.Short;
else return a.height<b.height;
}
void init(){
for(int i=n;i>=1;i--){
p.clear();edge[i].init();
s.insert(node[i]);
set<Node>::iterator it=s.find(node[i]),it2=it;
if((++it)!=s.end()){
jy.height=(*it).height;
jy.position=(*it).position;
jy.Short=abs((*it).height-node[i].height);
p.insert(jy);
}
else goto deal1;
if((++it)!=s.end()){
jy.height=(*it).height;
jy.position=(*it).position;
jy.Short=abs((*it).height-node[i].height);
p.insert(jy);
}
deal1:if(it2==s.begin())goto deal;
if((--it2)==s.begin()){
jy.height=(*it2).height;
jy.position=(*it2).position;
jy.Short=abs((*it2).height-node[i].height);
p.insert(jy);
goto deal;
}
else
{
jy.height=(*it2).height;
jy.position=(*it2).position;
jy.Short=abs((*it2).height-node[i].height);
p.insert(jy);
}
it2--;
jy.height=(*it2).height;
jy.position=(*it2).position;
jy.Short=abs((*it2).height-node[i].height);
p.insert(jy);
deal:set<Node2>::iterator itp=p.begin();
if(itp!=p.end()){
edge[i].weight=(*itp).Short;
edge[i].to=(*itp).position;
if((++itp)!=p.end()){
edge[i].weight2=(*itp).Short;
edge[i].to2=(*itp).position;
}
}
}
}
signed main(){
scanf("%lld",&n);
for(int i=1;i<=n;i++){
scanf("%lld",&node[i].height);
node[i].position=i;
}
init();
for(int i=1;i<=n;i++){
g[i][0]=edge[edge[i].to2].to;
f[i][0][0]=edge[i].weight2;
f[i][0][1]=edge[edge[i].to2].weight;
}
for(int j=1;j<=18;j++){
for(int i=1;i<=n;i++){
g[i][j]=g[g[i][j-1]][j-1];
f[i][j][0]=f[g[i][j-1]][j-1][0]+f[i][j-1][0];
f[i][j][1]=f[g[i][j-1]][j-1][1]+f[i][j-1][1];
}
}
scanf("%lld%lld",&x,&m);
for(int i=1;i<=n;i++){
int wei1=0,wei2=0,S=i,temp=x;
for(int j=17;j>=0;j--){
if(temp>=f[S][j][0]+f[S][j][1]&&g[S][j]){
wei1+=f[S][j][0];
wei2+=f[S][j][1];
temp=temp-(f[S][j][0]+f[S][j][1]);
S=g[S][j];
}
}
if(temp>=edge[S].weight2&&edge[S].to2){
temp-=edge[S].weight2;
wei1+=edge[S].weight2;
}
if(wei2&&(ans>1.0*wei1/wei2||(ans==1.0*wei1/wei2&&rech<node[i].height))){
rech=node[i].height;
rec=i;
ans=1.0*wei1/wei2;
}
}
printf("%lld\n",rec);
for(int i=1;i<=m;i++){
scanf("%lld%lld",&xx,&x);
int wei1=0,wei2=0,S=xx,temp=x;
for(int j=17;j>=0;j--){
if(temp>=f[S][j][0]+f[S][j][1]&&g[S][j]){
wei1+=f[S][j][0];
wei2+=f[S][j][1];
temp=temp-(f[S][j][0]+f[S][j][1]);
S=g[S][j];
}
}
if(temp>=edge[S].weight2&&edge[S].to2){
temp-=edge[S].weight2;
wei1+=edge[S].weight2;
}
printf("%lld %lld\n",wei1,wei2);
}
}

NOIP2012 T3开车旅行 set+倍增的更多相关文章

  1. 【NOIP2012】开车旅行(倍增)

    题面 Description 小A 和小B决定利用假期外出旅行,他们将想去的城市从1到N 编号,且编号较小的城市在编号较大的城市的西边,已知各个城市的海拔高度互不相同,记城市 i的海拔高度为Hi,城市 ...

  2. Luogu 1081 【NOIP2012】开车旅行 (链表,倍增)

    Luogu 1081 [NOIP2012]开车旅行 (链表,倍增) Description 小A 和小B决定利用假期外出旅行,他们将想去的城市从1到N 编号,且编号较小的城市在编号较大的城市的西边,已 ...

  3. 2012Noip提高组Day1 T3 开车旅行

    题目描述 小 A 和小 B 决定利用假期外出旅行,他们将想去的城市从 1 到 N 编号,且编号较小的 城市在编号较大的城市的西边,已知各个城市的海拔高度互不相同,记城市 i 的海拔高度为 Hi,城市 ...

  4. 【vijos1780】【NOIP2012】开车旅行 倍增

    题目描述 有\(n\)个城市,第\(i\)个城市的海拔为\(h_i\)且这\(n\)个城市的海拔互不相同.编号比较大的城市在东边.两个城市\(i,j\)之间的距离为\(|h_i-h_j|\) 小A和小 ...

  5. NOIP2012开车旅行 【倍增】

    题目 小 A 和小 B 决定利用假期外出旅行,他们将想去的城市从 1 到 N 编号,且编号较小的城市在编号较大的城市的西边,已知各个城市的海拔高度互不相同,记城市 i 的海拔高度为Hi,城市 i 和城 ...

  6. $Noip2012\ Luogu1081$ 开车旅行 倍增优化$ DP$

    Luogu Description Sol 1.发现对于每个城市,小A和小B的选择是固定的,可以预处理出来,分别记为ga[],gb[] 2.并且,只要知道了出发城市和出发天数,那么当前城市和小A,小B ...

  7. vijos P1780 【NOIP2012】 开车旅行

    描述 小\(A\)和小\(B\)决定利用假期外出旅行,他们将想去的城市从\(1\)到\(N\)编号,且编号较小的城市在编号较大的城市的西边,已知各个城市的海拔高度互不相同,记城市\(i\)的海拔高度为 ...

  8. noip2012 P1081 开车旅行

    小 A 和小 B 决定利用假期外出旅行,他们将想去的城市从 1 到 N 编号,且编号较小的城市在编号较大的城市的西边,已知各个城市的海拔高度互不相同,记城市 i 的海拔高度为Hi,城市 i 和城市 j ...

  9. luogu1081 开车旅行 树上倍增

    题目大意 小A和小B决定利用假期外出旅行,他们将想去的城市从1到N编号,且编号较小的城市在编号较大的城市的西边,已知各个城市的海拔高度互不相同,记城市i 的海拔高度为Hi,城市i 和城市j 之间的距离 ...

随机推荐

  1. poj--1985--Cow Marathon(树的直径)

    Cow Marathon Time Limit: 2000MS   Memory Limit: 30000K Total Submissions: 4424   Accepted: 2214 Case ...

  2. python绘制caffe中网络模型

    caffe-master/python/draw_net.py 实现绘制caffe中定义的网络模型功能,将.prototxt文件可视化. 需要先安装pydot和protobuf工具 通过Anacond ...

  3. NSURLSession简介

    NSURLSession是iOS7中新的网络接口,它与咱们熟悉的NSURLConnection是并列的.在程序在前台时,NSURLSession与NSURLConnection可以互为替代工作.注意, ...

  4. BZOJ 3230 后缀数组+ST

    思路: 首先我们已经会了后缀数组求本质不同的子串个数 这道题跟那个差不多 首先我们可以知道按字典序排好的每个后缀之前包含多少本质不同的字串 就是sigma(n-sa[i]+1-ht[i]+bi[i-1 ...

  5. adplus 抓取dump

    工具所在路径   C:\Program Files\Windows Kits\10\Debuggers\x64 cmd窗口切换目录倒adplus所在路径下,输入抓取命令.adplus -hang -p ...

  6. struts2学习之基础笔记6

    第十一章 Struts 2的国际化 1 国际化简介 http协议,request_locale值 Locale类àà封装类request_locale值       ResourcesBandleàà ...

  7. mobiscroll插件的基本使用方法

    前一阵子接触到了mobiscroll插件,用在移动端的日期选择上,感觉倍棒,于是便敲了一个小案例,与大家一起分享分享 <!DOCTYPE html> <html lang=" ...

  8. Codeforces Round #493 (Div. 2) B. Cutting 前缀和优化_动归水题

    不解释,题目过水 Code: #include<cstdio> #include<cmath> #include<algorithm> using namespac ...

  9. BZOJ 2118 墨墨的等式 (同余最短路)

    题目大意:已知B的范围,求a1x1+a2x2+...+anxn==B存在非负正整数解的B的数量,N<=12,ai<=1e5,B<=1e12 同余最短路裸题 思想大概是这样的,我们选定 ...

  10. ubuntu18.04crontab定时任务不执行

    环境介绍: 本人使用python写了一个自动化提交巡检的脚本放在服务器上,使用crontab去执行脚本的时候动作并没有执行,查看crontab日志时也不存在这个日志文件.如何如排查呢? 解决方案: 步 ...