HDU 5729 Rigid Frameworks (联通块计数问题)
通过看题解画图可以发现:
不论怎么转,一列里的横边/一行里的竖边始终平行
当我们加固一个格子时,会让它所在的这一行的竖边和这一列的横边保证垂直
而我们的目标是求所有竖边和横边都保证垂直的方案数
把一行里的所有竖边看成一个点,把一列里的所有横边看成一个点。一共$n+m$个点
把图看成二分图,左侧$n$个点,右侧$m$个点。加固一个格子相当于在左侧的一个点和右侧的一个点之间连边!
我们的问题变成了求解二分图的连通图个数!
接下来就是很套路的$DP$了
定义$f(a,b)$表示左边$a$个点,右边$b$个点的连通二分图个数
对于连通图问题,我们依然采用常规的“固定思想”,我们固定左侧第一个点
直接求联通很困难,考虑用不合法的情况相减,可得$DP$方程:
$f(a,b)=3^{ab}-\sum_{i=0}^{a}\sum_{j=0}^{b}f(i,j)C_{a-1}^{i-1}C_{b}^{j}3^{(a-i)(b-j)}$
(注意i=a,j=b是不能转移的)
初值怎么赋需要思考
#include <cstdio>
#include <cstring>
#include <algorithm>
#define N1 65
#define M1 3605
#define ll long long
using namespace std;
const ll p=; int n,m,T;
int pw3[M1],C[N1][N1],f[N1][N1]; int main()
{
int i,j,a,b; n=; m=;
for(i=,pw3[]=;i<=n*m;i++) pw3[i]=3ll*pw3[i-]%p;
C[][]=;
for(i=;i<=max(n,m);i++)
{
C[i][]=C[i][i]=;
for(j=;j<i;j++)
C[i][j]=(C[i-][j]+C[i-][j-])%p;
}
f[][]=; f[][]=; //pw3[0]=0;
for(a=,b=;b<=m;b++)
{
f[a][b]=pw3[a*b];
for(j=,i=;j<b;j++)
{
f[a][b]=(f[a][b]-1ll*f[i][j]*C[a-][i-]%p*C[b][j]%p*pw3[(a-i)*(b-j)]%p+p)%p;
}
}
for(a=;a<=n;a++)
{
for(b=;b<=m;b++)
{
f[a][b]=pw3[a*b];
for(i=;i<a;i++)
for(j=;j<=b;j++)
f[a][b]=(f[a][b]-1ll*f[i][j]*C[a-][i-]%p*C[b][j]%p*pw3[(a-i)*(b-j)]%p+p)%p;
for(j=,i=a;j<b;j++)
f[a][b]=(f[a][b]-1ll*f[i][j]*C[a-][i-]%p*C[b][j]%p*pw3[(a-i)*(b-j)]%p+p)%p;
}
}
while(scanf("%d%d",&n,&m)!=EOF)
{
printf("%d\n",f[n][m]);
}
return ;
}
HDU 5729 Rigid Frameworks (联通块计数问题)的更多相关文章
- HDU 5729 - Rigid Frameworks
题意: 对于一个由n*m个1*1的菱形组成可任意扭曲的矩形(姑且这么说),求添加斜线*(两种)让菱形变成正方形,使得整个矩形固定且无法扭曲的方案数. 分析: n*m的矩形有如下性质:( 平 ...
- HDU 5729 Rigid Frameworks(连通性DP)
[题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=5729 [题目大意] 给出一个n*m的方格框,可以在单位矩形中添加两种对角线的线,使得其变得稳定,问 ...
- HDU - 1213 dfs求联通块or并查集
思路:给定一个无向图,判断有几个联通块. AC代码 #include <cstdio> #include <cmath> #include <algorithm> ...
- HDU 4738 Caocao's Bridges ——(找桥,求联通块)
题意:给你一个无向图,给你一个炸弹去炸掉一条边,使得整个图不再联通,你需要派人去安置炸弹,且派去的人至少要比这条边上的人多.问至少要派去多少个,如果没法完成,就输出-1. 分析:如果这个图是已经是多个 ...
- 2016 Multi-University Training Contest 1 G. Rigid Frameworks
Rigid Frameworks Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others) ...
- Codeforces 731C. Socks 联通块
C. Socks time limit per test: 2 seconds memory limit per test: 256 megabytes input: standard input o ...
- Codeforces Round #369 (Div. 2) D. Directed Roads dfs求某个联通块的在环上的点的数量
D. Directed Roads ZS the Coder and Chris the Baboon has explored Udayland for quite some time. The ...
- Educational Codeforces Round 5 - C. The Labyrinth (dfs联通块操作)
题目链接:http://codeforces.com/contest/616/problem/C 题意就是 给你一个n行m列的图,让你求’*‘这个元素上下左右相连的连续的’.‘有多少(本身也算一个), ...
- 【UVA10765】Doves and bombs (BCC求割点后联通块数量)
题目: 题意: 给了一个联通无向图,现在问去掉某个点,会让图变成几个联通块? 输出的按分出的从多到小,若相等,输出标号从小到大.输出M个. 分析: BCC求割点后联通块数量,Tarjan算法. 联通块 ...
随机推荐
- 计算cost--全表扫描
以下教大家怎样手工算出oracle运行计划中的cost值. 成本的计算方式例如以下: Cost = ( #SRds * sreadtim + #MRds * mreadti ...
- 刚開始学习的人非常有用之chm结尾的參考手冊打开后无法正常显示
从网上下载了struts2的參考手冊.chm(本文适用全部已.chm结尾的文件)不能正常打开使用. 如图: watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQv/ ...
- IOS7中动态计算UILable的高度
.h文件 #import <UIKit/UIKit.h> @interface UILabel (ContentSize) - (CGSize)contentSize; @end .m文件 ...
- luogu3155 [CQOI2009]叶子的染色
题目大意 给一棵m个结点的无根树,你可以选择一个度数大于1的结点作为根,然后给一些结点(根.内部结点和叶子均可)着以黑色或白色.你的着色方案应该保证根结点到每个叶子的简单路径上都至少包含一个有色结点( ...
- poj 3498 March of the Penguins(拆点+枚举汇点 最大流)
March of the Penguins Time Limit: 8000MS Memory Limit: 65536K Total Submissions: 4873 Accepted: ...
- 0604-面向对象、类与对象、类、static、构造方法/析构方法
一.面向对象 1.面向过程:一个人分步骤完成某个事情 2.面向对象:某件事情拆分为多个任务,由每个对象独立完成,最后调用整合为一个完整的项目 3.三要素:继承.封装.多态. 封装:私有化属性 提供公共 ...
- php 关于使用七牛云存储
1.首先注册七牛云存储账号 http://www.qiniu.com/ 2.获得密钥 3.仔细查看文档 http://developer.qiniu.com/docs/v6/sdk/php-sdk.h ...
- bzoj3297[USACO2011 Open]forgot(dp + string)
3297: [USACO2011 Open]forgot Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 137 Solved: 94[Submit] ...
- 5.14web相关概念
1.软件架构 1.C/S:客户端/服务器端 2.B/S:浏览器/服务器端 2.资源分类 1.静态资源:所有用户访问后,得到的结果都是一样的,称为静态资源.静态资源可以直接被浏览器解析如:html,cs ...
- 1.java安全框架SHIRO
1. shiro介绍 Apache Shiro是一个强大且易用的java安全框架,执行身份验证.授权.密码和会话管理. 使用Shiro的易于理解的API,您可以快速.轻松地获得任何应用程序,从最小的移 ...