keras 与tensorflow 混合使用
keras 与tensorflow 混合使用
tr:nth-child(odd) > td,
.table-striped tbody > tr:nth-child(odd) > th {
background-color: #f9f9f9;
}
tr { page-break-inside: avoid; }
.story_image_container{
page-break-inside: avoid;
}
.xsj_underline{
page-break-after: always;
visibility: hidden;
}
.table-celled.table tr td,.table-celled.table tr th {
border-left: 1px solid rgba(34,36,38,.1)
}
.table-celled.table tr td:first-child,.table-celled.table tr th:first-child {
border-left: none
}
.toc ul {
list-style: none;
}
p {
line-height: 1.6;
}
body>p {
margin-bottom: 1.8em;
}
body>p>img.center,
body>p>a>img.center {
display: block;
margin: 0 auto;
background-color: rgba(128,128,128,0.3);
}
body {
font-family: 'Helvetica Neue', Helvetica, Tahoma, Arial, 'Hiragino Sans GB', STHeiti, "Microsoft YaHei", "微软雅黑", 'WenQuanYi Micro Hei', STXihei, "华文细黑", Heiti, "黑体", SimSun, "宋体", Song, sans-serif;
font-size: 18px;
line-height: 1.33;
font-weight: 100;
// line-height: 1.8em;
color: #2f2f2f;
word-wrap: break-word;
word-break: break-word;
}
em.cjk_emphasis{
font-style: normal;
font-family: Georgia,"Times New Roman",Times,"楷体","AR PL UKai CN", "NSimSun","Songti SC","SimSun",serif!important;
}
body dt,
body dd {
line-height: 1.35em;
}
body code, body .xiaoshujiang_code {
// background-color: #D6DBDF;
border: 0;
border-radius: 4px;
// color: #2C3E50;
font-size: 90%;
// padding: 2px 4px;
}
code {
background-color: rgba(214, 219, 223, 0.28);
border-radius: 4px;
color: #2C3E50;
padding: 2px 4px;
}
.xiaoshujiang_code ol{
margin-bottom: 0px;
}
body h1 {
line-height: 1.6;
}
body h2 {
line-height: 1.1;
}
body h3 {
line-height: 1.1;
}
.hljs, .hljs * {
overflow: visible !important;
}
/**
* Treeview syntax highlighting based on highlight.js
* Copyright (c) 2014-2015, Asciidocfx Team, (MIT Licensed)
* https://github.com/asciidocfx/highlight-treeview.js
*/
.language-treeview.hljs{
position: relative;
}
.hljs-folder,
.hljs-hiddenfile,
.hljs-file {
position: relative;
vertical-align: top;
display: inline-block;
height: 16px;
}
.hljs-folder:before,
.hljs-file:before,
.hljs-hiddenfile:before {
top: 0;
content: '';
width: 14px;
height: 12px;
margin-top: 0px;
margin-right: 3px;
position: relative;
display: inline-block;
background-size: 14px;
background-repeat: no-repeat;
}
.hljs-file:before,
.hljs-hiddenfile:before {
height: 14px;
margin-left: 1px;
}
.hljs-hiddenfile {
opacity: 0.6;
}
.hljs-file.photo:before {
font: normal normal normal 14px/1 FontAwesome;
content: "\f1c5";
}
.hljs-file.plain:before {
font: normal normal normal 14px/1 FontAwesome;
content: "\f016";
}
.hljs-file.source:before {
font: normal normal normal 14px/1 FontAwesome;
content: "\f1c9";
}
.hljs-file.archive:before {
font: normal normal normal 14px/1 FontAwesome;
content: "\f1c6";
}
.hljs-file.audio:before {
font: normal normal normal 14px/1 FontAwesome;
content: "\f1c7";
}
.hljs-file.video:before {
font: normal normal normal 14px/1 FontAwesome;
content: "\f1c8";
}
.hljs-file.pdf:before {
font: normal normal normal 14px/1 FontAwesome;
content: "\f1c1";
}
.hljs-file.xls:before {
font: normal normal normal 14px/1 FontAwesome;
content: "\f1c3";
}
.hljs-file.doc:before {
font: normal normal normal 14px/1 FontAwesome;
content: "\f1c2";
}
.hljs-file.ppt:before {
font: normal normal normal 14px/1 FontAwesome;
content: "\f1c4";
}
.hljs-folder:before {
font: normal normal normal 14px/1 FontAwesome;
content: "\f114";
}
.hljs-hiddenfile:before {
font: normal normal normal 14px/1 FontAwesome;
content: "\f016";
}
.hljs-tvline {
margin-left: 6px;
position: absolute;
text-indent: -99em;
padding-bottom: 8px;
vertical-align: top;
display: inline-block;
border-left-width: 1px;
border-left-style: solid;
border-left-color: rgb(94, 144, 117);
}
.hljs-folder-branch {
width: 8px;
height: 8px;
margin-top: -1px;
margin-left: 6px;
text-indent: -99em;
position: relative;
vertical-align: top;
display: inline-block;
border-bottom-width: 1px;
border-bottom-style: solid;
border-bottom-color: rgb(94, 144, 117);
}
.hljs-folder-branch.win {
width: 14px;
margin-right: 2px;
}
.hljs-folder-last-branch {
height: 7px;
width: 7px;
margin-left: 6px;
text-indent: -99em;
position: relative;
vertical-align: top;
display: inline-block;
border-bottom-width: 1px;
border-bottom-style: solid;
border-bottom-color: rgb(94, 144, 117);
border-left-width: 1px;
border-left-style: solid;
border-left-color: rgb(94, 144, 117);
}
.hljs-folder-last-branch.win {
width: 13px;
margin-right: 2px;
}
/**
* Treeview syntax highlighting based on highlight.js
*/
.mark{
border: 0;
background-color: rgba(221, 243, 231, 0.4);
border-radius: 4px;
color: #29754d;
font-size: 90%;
padding: 2px 4px;
}
.line_mark{
border: 1px dashed #3A4C42;
margin-top: 2px;
}
code .mark, .xiaoshujiang_code .mark{
border-radius: 0px;
font-size: initial;
padding: initial;
}
a.attachment{
background-color: #ecf0f3;
border: 1px solid #bec6cb;
display: inline-block;
padding: 5px;
margin: 2px;
min-width: 250px;
}
a.attachment i.fa{
font-size: 3em;
float: left;
margin-right: 0.2em;
}
a.attachment .filename{
vertical-align: top;
text-align: left;
font-weight: bold;
}
a.attachment .filesize{
display: -webkit-box;
display: -moz-box;
display: -ms-flexbox;
display: -webkit-flex;
display: flex;
opacity: .6;
font-size: 80%;
white-space: nowrap;
}
.checkbox .checked{
text-decoration: line-through;
}
.flow-chart, .sequence-diagram{
text-align: center;
}
.plot, .plot-image{
text-align: center;
min-height: 200px;
min-width: 200px;
}
pre, .xiaoshujiang_pre {
line-height: initial !important;
word-wrap: break-word;
word-break: break-word;
tab-size: 4;
white-space: pre-wrap;
}
.xiaoshujiang_code_container pre{
margin: 0px;
}
.xiaoshujiang_code_container.xiaoshujiang_code_chunk{
box-shadow: 0 0 0 1px #A3C293 inset,0 0 0 0 transparent;
margin: 1em 0;
padding: 1em;
}
.xiaoshujiang_code_container.xiaoshujiang_code_chunk_hide_code{
box-shadow: initial;
padding: initial;
padding-bottom: 2em;
}
.xiaoshujiang_code_container .out_put{
box-shadow: 0 0 0 1px #A3C293 inset,0 0 0 0 transparent;
margin: 1em 0;
background-color: #FCFFF5;
color: #2C662D;
padding: 1em;
}
.xiaoshujiang_code_container .out_put_error{
background-color: #FFF6F6;
color: #9F3A38;
margin: 1em 0;
box-shadow: 0 0 0 1px #E0B4B4 inset,0 0 0 0 transparent;
padding: 1em;
}
.xiaoshujiang_pre {
font-family: monospace;
}
.story_align_left, .story_align_left .story_image_container {
text-align: left;
}
.story_align_right, .story_align_right .story_image_container {
text-align: right;
}
.story_align_center, .story_align_center .story_image_container {
text-align: center;
}
.story_align_justify, .story_align_justify .story_image_container {
text-align: justify;
}
/**
* code line nums
*/
code.hljs.code_linenums, .xiaoshujiang_code.hljs.code_linenums{
position: relative;
}
.ol_linenums{
padding: 0px;
margin-left: 30px;
border-left: 1px solid #e0e0e0;
}
.li_linenum{
margin-left: 10px;
list-style: none;
counter-increment: lines 1;
}
.li_linenum.li_list_style{
list-style: inherit;
margin-left: 5px;
}
.li_linenum:before, .li_linenum_before_span{
content: counter(lines, decimal);
position: absolute;
left: 0px;
text-align: center;
width: 2.5em;
vertical-align: top;
}
.li_linenum_before_span_hide{
display: none;
}
.xiaoshujiang_code .code_line_break_hack{
margin:0;
border:0;
border-top:0;
border-bottom:0;
}
/**
* code line nums
*/
.mathjax-container{
text-align: center;
}
div.mathjax{
max-width: 600px;
margin: 0 auto;
font-size: 14px;
}
text{
font-size: 14px;
}
/**
* block image
*/
.story_image_container{
text-align: center;
}
.story_image_container>.story_image{
display: inline-block;
position: relative;
max-width: 80%;
}
.story_image_caption{
border-bottom: 1px solid #d9d9d9;
display: inline-block;
color: #999;
padding: 10px;
}
.story_image_blank_caption{
border-bottom: 0px;
}
/**
.story_image:before, .story_image:after{
content: '';
position: absolute;
z-index: -2;
bottom: 13px;
left: 10px;
width: 50%;
height: 20%;
border-radius: 10px/90px;
box-shadow: 0 15px 10px rgba(0,0,0,0.7);
-webkit-transform: rotate(-3deg);
-moz-transform: rotate(-3deg);
-ms-transform: rotate(-3deg);
-o-transform: rotate(-3deg);
transform: rotate(-3deg);
}
.story_image:after {
right: 10px;
left: auto;
-webkit-transform: rotate(3deg);
-moz-transform: rotate(3deg);
-ms-transform: rotate(3deg);
-o-transform: rotate(3deg);
transform: rotate(3deg);
}
**/
.story_image>img{
border-radius: 0.3125em;
box-shadow: 0 2px 4px 0 rgba(34,36,38,.12),0 2px 10px 0 rgba(34,36,38,.08);
}
.story_inline_image>img{
max-width: 50%;
vertical-align: bottom;
}
.story_remote_resource_block{
text-align: center;
}
.xiaoshujiang_code_container {
margin: 1em 0px;
position: relative;
padding-bottom: 2em;
}
.xiaoshujiang_code_title_container{
font-size: 70%;
opacity: 0.5;
}
.xiaoshujiang_code_title_container>.xiaoshujiang_code_infos{
float: right;
}
.task-list-item{
list-style: none;
}
.task-list-item.li_list_style{
list-style:inherit;
}
.task-list-item>input{
margin: 0 0 0 -20px;
}
.video_container{
width: 100%;
display: table;
text-align: center;
position: relative;
padding-bottom: 56.25%!important;
}
.slideshare_container .inner{
position: relative;
width: 100%;
}
.slideshare_container .inner iframe{
width: 100%;
height: 100%;
position: absolute;
top: 0;
bottom: 0;
left: 0;
right: 0;
}
.video_container iframe{
width: 100%;
height: 100%;
position: absolute;
top: 0;
left: 0;
z-index: 1;
vertical-align: middle;
}
kbd{
display: inline-block;
padding: 3px 5px;
font-size: 11px;
line-height: 10px;
color: #555;
vertical-align: middle;
background-color: #fcfcfc;
border: solid 1px #ccc;
border-bottom-color: #bbb;
border-radius: 3px;
box-shadow: inset 0 -1px 0 #bbb;
}
.blank_anchor_id {
float: left;
}
.blank_anchor_id {
visibility: hidden;
}
.blank_anchor_id:before {
content: 'a';
}
blockquote footer{
margin: 1em 0;
font-style: italic;
}
blockquote footer cite {
margin: 0 1em;
}
/*wavedrom start*/
.wavedrom_svg text, .wavedrom_svg_defs text {
font-size:11pt;
font-style:normal;
font-variant:normal;
font-weight:normal;
font-stretch:normal;
text-align:center;
fill-opacity:1;
font-family:Helvetica
}
.wavedrom_svg .muted, .wavedrom_svg_defs .muted {
fill:#aaa
}
.wavedrom_svg .warning, .wavedrom_svg_defs .warning {
fill:#f6b900
}
.wavedrom_svg .error, .wavedrom_svg_defs .error {
fill:#f60000
}
.wavedrom_svg .info, .wavedrom_svg_defs .info {
fill:#0041c4
}
.wavedrom_svg .success, .wavedrom_svg_defs .success {
fill:#00ab00
}
.wavedrom_svg .h1, .wavedrom_svg_defs .h1 {
font-size:33pt;
font-weight:bold
}
.wavedrom_svg .h2, .wavedrom_svg_defs .h2 {
font-size:27pt;
font-weight:bold
}
.wavedrom_svg .h3, .wavedrom_svg_defs .h3 {
font-size:20pt;
font-weight:bold
}
.wavedrom_svg .h4, .wavedrom_svg_defs .h4 {
font-size:14pt;
font-weight:bold
}
.wavedrom_svg .h5, .wavedrom_svg_defs .h5 {
font-size:11pt;
font-weight:bold
}
.wavedrom_svg .h6, .wavedrom_svg_defs .h6 {
font-size:8pt;
font-weight:bold
}
.wavedrom_svg_defs .s1 {
fill:none;
stroke:#000;
stroke-width:1;
stroke-linecap:round;
stroke-linejoin:miter;
stroke-miterlimit:4;
stroke-opacity:1;
stroke-dasharray:none
}
.wavedrom_svg_defs .s2 {
fill:none;
stroke:#000;
stroke-width:0.5;
stroke-linecap:round;
stroke-linejoin:miter;
stroke-miterlimit:4;
stroke-opacity:1;
stroke-dasharray:none
}
.wavedrom_svg_defs .s3 {
color:#000;
fill:none;
stroke:#000;
stroke-width:1;
stroke-linecap:round;
stroke-linejoin:miter;
stroke-miterlimit:4;
stroke-opacity:1;
stroke-dasharray:1,3;
stroke-dashoffset:0;
marker:none;
visibility:visible;
display:inline;
overflow:visible;
enable-background:accumulate
}
.wavedrom_svg_defs .s4 {
color:#000;
fill:none;
stroke:#000;
stroke-width:1;
stroke-linecap:round;
stroke-linejoin:miter;
stroke-miterlimit:4;
stroke-opacity:1;
stroke-dasharray:none;
stroke-dashoffset:0;
marker:none;
visibility:visible;
display:inline;
overflow:visible
}
.wavedrom_svg_defs .s5 {
fill:#fff;
stroke:none
}
.wavedrom_svg_defs .s6 {
color:#000;
fill:#ffffb4;
fill-opacity:1;
fill-rule:nonzero;
stroke:none;
stroke-width:1px;
marker:none;
visibility:visible;
display:inline;
overflow:visible;
enable-background:accumulate
}
.wavedrom_svg_defs .s7 {
color:#000;
fill:#ffe0b9;
fill-opacity:1;
fill-rule:nonzero;
stroke:none;
stroke-width:1px;
marker:none;
visibility:visible;
display:inline;
overflow:visible;
enable-background:accumulate
}
.wavedrom_svg_defs .s8 {
color:#000;
fill:#b9e0ff;
fill-opacity:1;
fill-rule:nonzero;
stroke:none;
stroke-width:1px;
marker:none;
visibility:visible;
display:inline;
overflow:visible;
enable-background:accumulate
}
.wavedrom_svg_defs .s9 {
fill:#000;
fill-opacity:1;
stroke:none
}
.wavedrom_svg_defs .s10 {
color:#000;
fill:#fff;
fill-opacity:1;
fill-rule:nonzero;
stroke:none;
stroke-width:1px;
marker:none;
visibility:visible;
display:inline;
overflow:visible;
enable-background:accumulate
}
.wavedrom_svg_defs .s11 {
fill:#0041c4;
fill-opacity:1;
stroke:none
}
.wavedrom_svg_defs .s12 {
fill:none;
stroke:#0041c4;
stroke-width:1;
stroke-linecap:round;
stroke-linejoin:miter;
stroke-miterlimit:4;
stroke-opacity:1;
stroke-dasharray:none
}
/*wavedrom stop*/
.mermaid_svg{
font-family: monospace;
}
@media print{
body{
word-wrap: break-word;
word-break: break-word;
background: initial;
}
}
/*
Orginal Style from ethanschoonover.com/solarized (c) Jeremy Hull
*/
.hljs {
display: block;
overflow-x: auto;
padding: 0.5em;
background: #fdf6e3;
color: #657b83;
}
.hljs-comment,
.hljs-quote {
color: #93a1a1;
}
/* Solarized Green */
.hljs-keyword,
.hljs-selector-tag,
.hljs-addition {
color: #859900;
}
/* Solarized Cyan */
.hljs-number,
.hljs-string,
.hljs-meta .hljs-meta-string,
.hljs-literal,
.hljs-doctag,
.hljs-regexp {
color: #2aa198;
}
/* Solarized Blue */
.hljs-title,
.hljs-section,
.hljs-name,
.hljs-selector-id,
.hljs-selector-class {
color: #268bd2;
}
/* Solarized Yellow */
.hljs-attribute,
.hljs-attr,
.hljs-variable,
.hljs-template-variable,
.hljs-class .hljs-title,
.hljs-type {
color: #b58900;
}
/* Solarized Orange */
.hljs-symbol,
.hljs-bullet,
.hljs-subst,
.hljs-meta,
.hljs-meta .hljs-keyword,
.hljs-selector-attr,
.hljs-selector-pseudo,
.hljs-link {
color: #cb4b16;
}
/* Solarized Red */
.hljs-built_in,
.hljs-deletion {
color: #dc322f;
}
.hljs-formula {
background: #eee8d5;
}
.hljs-emphasis {
font-style: italic;
}
.hljs-strong {
font-weight: bold;
}
-->
keras 与tensorflow 混合使用
最近tensorflow更新了新版本,到1.4了。做了许多更新,当然重要的是增加了tf.keras. 毕竟keras对于模型搭建的方便大家都是有目共睹的。
喜欢keras风格的模型搭建而不喜欢tensorflow的方式。
但是个人觉得tensorflow的对于loss function定义的灵活性,还是非常便捷的,所以秉承着将二者的优势放在一起的想法,研究了一下如何混合的过程。
众所周知,keras搭建模型有两种方式,Sequential 和 function(?)这两种方式,而函数式搭建每一层返回的都是tensor结果,这就和tensorflow里面的对上了。所以做了如下初探:
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
# build module
img = tf.placeholder(tf.float32, shape=(None, 784))
labels = tf.placeholder(tf.float32, shape=(None, 10))
x = tf.keras.layers.Dense(128, activation='relu')(img)
x = tf.keras.layers.Dense(128, activation='relu')(x)
prediction = tf.keras.layers.Dense(10, activation='softmax')(x)
loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=prediction, labels=labels))
train_optim = tf.train.AdamOptimizer().minimize(loss)
mnist_data = input_data.read_data_sets('MNIST_data/', one_hot=True)
with tf.Session() as sess:
init = tf.global_variables_initializer()
sess.run(init)
for _ in range(1000):
batch_x, batch_y = mnist_data.train.next_batch(50)
sess.run(train_optim, feed_dict={img: batch_x, labels: batch_y})
acc_pred = tf.keras.metrics.categorical_accuracy(labels, prediction)
pred = sess.run(acc_pred, feed_dict={labels: mnist_data.test.labels, img: mnist_data.test.images})
print('accuracy: %.3f' % (sum(pred)/len(mnist_data.test.labels)))
keras 与tensorflow 混合使用的更多相关文章
- TensorFlow+Keras 03 TensorFlow 与 Keras 介绍
1 TensorFlow 架构图 1.1 处理器 TensorFlow 可以在CPU.GPU.TPU中执行 1.2 平台 TensorFlow 具备跨平台能力,Windows .Linux.Andro ...
- Reducing and Profiling GPU Memory Usage in Keras with TensorFlow Backend
keras 自适应分配显存 & 清理不用的变量释放 GPU 显存 Intro Are you running out of GPU memory when using keras or ten ...
- 在android上跑 keras 或 tensorflow 模型
https://groups.google.com/forum/#!topic/keras-users/Yob7mIDmTFs http://talc1.loria.fr/users/cerisara ...
- 使用C++部署Keras或TensorFlow模型
本文介绍如何在C++环境中部署Keras或TensorFlow模型. 一.对于Keras, 第一步,使用Keras搭建.训练.保存模型. model.save('./your_keras_model. ...
- 版本问题---keras和tensorflow的版本对应关系
keras和tensorflow的版本对应关系,可参考: Framework Env name (--env parameter) Description Docker Image Packages ...
- Keras---Virtualenv 下安装Keras (基于Tensorflow后端)
Python---Virtualenv 下安装Keras (基于Tensorflow后端) 一.Keras简介 https://keras-cn.readthedocs.io/en/latest ...
- Win10上安装Keras 和 TensorFlow(GPU版本)
一. 安装环境 Windows 10 64bit 家庭版 GPU: GeForce GTX1070 Python: 3.5 CUDA: CUDA Toolkit 8.0 GA1 (Sept 2016 ...
- SELU︱在keras、tensorflow中使用SELU激活函数
arXiv 上公开的一篇 NIPS 投稿论文<Self-Normalizing Neural Networks>引起了圈内极大的关注,它提出了缩放指数型线性单元(SELU)而引进了自归一化 ...
- 【tf.keras】TensorFlow 1.x 到 2.0 的 API 变化
TensorFlow 2.0 版本将 keras 作为高级 API,对于 keras boy/girl 来说,这就很友好了.tf.keras 从 1.x 版本迁移到 2.0 版本,需要修改几个地方. ...
随机推荐
- Lambda表达式怎么写SQL中的in?
ambda表达式查询没有IN这个方法,可以变通一下,in查询的数组是否包含在映射对象里面的集合里 直接贴代码吧,一看就懂了 class Program { static void Main(strin ...
- Mac OS下配置 ADB环境变量
前提已经安装了Android sdk. 步骤打开终端Terminal, 输入open -e ~/.bash_profile, 若之前没有该文件,会自动创建.添加内容 export PATH=${PAT ...
- sql数据库中常用连接
很简单的知识点,今天有点搞不清楚左外连接,右外连接:详见以下: --表stu id name 1, Jack 2, Tom 3, Kity 4, nono --表exam id grade 1, 56 ...
- 题解报告:poj 3233 Matrix Power Series(矩阵快速幂)
题目链接:http://poj.org/problem?id=3233 Description Given a n × n matrix A and a positive integer k, fin ...
- 升级Xcode或 MacOS编译iOS出现resource fork, Finder information, or similar detritus not allowed
很久没有在网上留下足迹了,冒个泡吧 最近升级了Xcode,编译之前的一个项目是出现问题,问题结尾如下: resource fork, Finder information, or similar de ...
- Linq处理decimal字段汇总Sum()为NULL
xxxxxxxx.Sum(f => f.jifen).GetValueOrDefault(0)
- HDU_1079_思维题
Calendar Game Time Limit: 5000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Tot ...
- SpringMVC注解配置处理器映射器和处理器适配器
一.springmvc.xml中配置方式 <!--注解映射器 --> <bean class="org.springframework.web.servlet.mvc.me ...
- Scala 技术笔记之 Option Some None
避免null使用 大多数语言都有一个特殊的关键字或者对象来表示一个对象引用的是“无”,在Java,它是null.在Java 里,null 是一个关键字,不是一个对象,所以对它调用任何方法都是非法的.但 ...
- 如何区分null和undefined
null和undefined是两种数据类型, 如果硬要区分的话. null是一种类型, 赋值变量为null型. 未定义的变量, 即为undefined. var a = null a // null ...