codevs 1019 集合论与图论
集合论与图论对于小松来说是比数字逻辑轻松,比数据结构难的一门专业必修课。虽然小松在高中的时候已经自学过了离散数学中的图论,组合,群论等知识。但对于集合论,小松还是比较陌生的。集合论的好多东西也涉及到了图论的知识。
在第四讲的学习中,小松学到了“有序对”这么一个概念,即用<x, y>表示有序对x和y。要注意的是有序对<x, y>不等于有序对<y, x>。对于一个有序对集合R={<x,y>, <y, z>, <x, z>,……},我们说R是传递的,当且仅当他满足下面的性质:
红色字体用直观的语言描述是:如果存在<x, y>∈R,<y, z>∈R,那么一定存在<x, z>∈R。
这里集合R可以对应到一个有向图G,有序对<x ,y>对应到了G中的一条有向边。 你现在的任务是,对于任意给定的一个简单有向图G(同一有向边不出现两次),判断G是否具有传递性。
输入文件set.in第一行包含测试数据的个数T(1<=T<=10)。接下来T组测试数据,每组测试数据第一行包含两个个整数n和m(1<=n<=1000, n<=m<=100000),表示G中元素个数和有向边的个数,接下来的m行每行2个整数x, y(1<=x,y<=n)表示x与y之间有一条有向边连接。
对于每组数据,如果G是传递的,你需要向输出文件set.out输出一行”Yes”, 否则输出一行”No”。
2
3 3
1 2
1 3
2 3
4 5
1 2
1 3
1 4
2 3
3 4
Yes
No
有30%满足1<=n<=100, 1<=m<=10000;
有100%的数据满足1<=n<=1000, 1<=m<=100000;
思路:暴力
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
int t,n,m,a,b;
bool trans=true;
bool graph[][];
int main(){
scanf("%d",&t);
while(t--){
trans=true;
scanf("%d%d",&n,&m);
memset(graph,,sizeof(graph));
for(int i=;i<m;i++){
scanf("%d%d",&a,&b);
graph[a][b]=true;
}
for(int x=;x<=n;x++)
for(int y=;y<=n;y++)
if(graph[x][y]&&x!=y)
for(int z=;z<=n;z++)
if(graph[y][z])
if(!graph[x][z]){
trans=false;
break;
}
if(trans) printf("Yes\n");
else printf("No\n");
}
}
codevs 1019 集合论与图论的更多相关文章
- codevs——1019 集合论与图论
1019 集合论与图论 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 黄金 Gold 题解 查看运行结果 题目描述 Description 集合论与图论对于小松来说 ...
- 【BZOJ-2732】集合选数 状压DP (思路题)
2734: [HNOI2012]集合选数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1070 Solved: 623[Submit][Statu ...
- bzoj2734 集合选数
Description <集合论与图论>这门课程有一道作业题,要求同学们求出{1, 2, 3, 4, 5}的所有满足以 下条件的子集:若 x 在该子集中,则 2x 和 3x 不能在该子集中 ...
- 2734: [HNOI2012]集合选数 - BZOJ
Description <集合论与图论>这门课程有一道作业题,要求同学们求出{1, 2, 3, 4, 5}的所有满足以 下条件的子集:若 x 在该子集中,则 2x 和 3x 不能在该子集中 ...
- bzoj 2734: [HNOI2012]集合选数 状压DP
2734: [HNOI2012]集合选数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 560 Solved: 321[Submit][Status ...
- bzoj2734: [HNOI2012]集合选数
Description <集合论与图论>这门课程有一道作业题,要求同学们求出{1, 2, 3, 4, 5}的所有满足以 下条件的子集:若 x 在该子集中,则 2x 和 3x 不能在该子集中 ...
- 【BZOJ2734】【HNOI2012】集合选数(状态压缩,动态规划)
[BZOJ2734][HNOI2012]集合选数(状态压缩,动态规划) 题面 Description <集合论与图论>这门课程有一道作业题,要求同学们求出{1, 2, 3, 4, 5}的所 ...
- [HNOI2012]集合选数
题目描述 <集合论与图论>这门课程有一道作业题,要求同学们求出{1, 2, 3, 4, 5}的所有满足以 下条件的子集:若 x 在该子集中,则 2x 和 3x 不能在该子集中. 同学们不喜 ...
- bzoj 2734: [HNOI2012]集合选数
题目描述 <集合论与图论>这门课程有一道作业题,要求同学们求出{1, 2, 3, 4, 5}的所有满足以 下条件的子集:若 x 在该子集中,则 2x 和 3x 不能在该子集中. 同学们不喜 ...
随机推荐
- mongodb官网文档阅读笔记:与写性能相关的几个因素
Indexes 和全部db一样,索引肯定都会引起写性能的下降,mongodb也没啥特别的,相对索引对读性能的提示,这些消耗通常是能够接受的,所以该加入的索引还是要加入.当然须要慎重一些.扯点远的,以前 ...
- thinkphp5.0的验证码安装和相关错误
thinkphp5.0的验证码安装和相关错误 问题 只要是之前使用thinkphp5框架搭建网站的时候发现不管如何调用验证码都无法使用,按照官网要求,使用composer安装验证码出现报错Fatal ...
- sicily 1003. hash
Description 请用HASH链式法来解决冲突,且规定链表在链表头插入新元素. 规定HASH函数为:h(x) = x % 11,即哈希数组下标为0-10. 给定两种操作: I 操作,插入一个新的 ...
- yarn平台的任务调度和执行过程
- js实现图片上传后即时预览
//关于FileReader对象 http://blog.csdn.net/zk437092645/article/details/8745647 <!DOCTYPE html> < ...
- Maven(一)之Maven入门
一.Maven简介 Maven可以翻译为“知识的积累”.“专家”.“内行”.作为Apache组织中的一个颇为成功的开源项目,Maven主要服务于基于Java平台的项目构建.依赖管理.和项目信息管理.M ...
- 解决高版本vm打开虚拟机报错
问题: 打开虚拟机的文件目录,找到.vmx 文件 用记事本打开重命名后的“.vmx.txt”文件 找到行:policy.vm.mvmtid = "52 10 08 ed ff 34 ed d ...
- PHP实现杨辉三角形
<?php /**** * 杨辉三角形:我的实现方式. * 下标 * 1 0 * 1 1 1 循环上一行数据1次,计算后结果追加到当前行末尾 * 1 2 1 2 * 1 3 3 1 3 * 1 ...
- 学习Go语言之单例模式
单例模式涉及到一个单一的类,该类负责创建自己的对象,同时确保只有单个对象被创建.这个类提供了一种访问其唯一的对象的方式,可以直接访问,不需要实例化该类的对象 // 单例模式 package main ...
- zabbix 使用自带模板监控mysql
1.这里可以采用zabbix自带的mysql模版,但是也需要在mysql服务器上准备获取mysql status的脚本chk_mysql.sh,zabbix通过调用这个脚本来获取mysql的运行信息. ...