codevs 1019 集合论与图论
集合论与图论对于小松来说是比数字逻辑轻松,比数据结构难的一门专业必修课。虽然小松在高中的时候已经自学过了离散数学中的图论,组合,群论等知识。但对于集合论,小松还是比较陌生的。集合论的好多东西也涉及到了图论的知识。
在第四讲的学习中,小松学到了“有序对”这么一个概念,即用<x, y>表示有序对x和y。要注意的是有序对<x, y>不等于有序对<y, x>。对于一个有序对集合R={<x,y>, <y, z>, <x, z>,……},我们说R是传递的,当且仅当他满足下面的性质:
红色字体用直观的语言描述是:如果存在<x, y>∈R,<y, z>∈R,那么一定存在<x, z>∈R。
这里集合R可以对应到一个有向图G,有序对<x ,y>对应到了G中的一条有向边。 你现在的任务是,对于任意给定的一个简单有向图G(同一有向边不出现两次),判断G是否具有传递性。
输入文件set.in第一行包含测试数据的个数T(1<=T<=10)。接下来T组测试数据,每组测试数据第一行包含两个个整数n和m(1<=n<=1000, n<=m<=100000),表示G中元素个数和有向边的个数,接下来的m行每行2个整数x, y(1<=x,y<=n)表示x与y之间有一条有向边连接。
对于每组数据,如果G是传递的,你需要向输出文件set.out输出一行”Yes”, 否则输出一行”No”。
2
3 3
1 2
1 3
2 3
4 5
1 2
1 3
1 4
2 3
3 4
Yes
No
有30%满足1<=n<=100, 1<=m<=10000;
有100%的数据满足1<=n<=1000, 1<=m<=100000;
思路:暴力
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
int t,n,m,a,b;
bool trans=true;
bool graph[][];
int main(){
scanf("%d",&t);
while(t--){
trans=true;
scanf("%d%d",&n,&m);
memset(graph,,sizeof(graph));
for(int i=;i<m;i++){
scanf("%d%d",&a,&b);
graph[a][b]=true;
}
for(int x=;x<=n;x++)
for(int y=;y<=n;y++)
if(graph[x][y]&&x!=y)
for(int z=;z<=n;z++)
if(graph[y][z])
if(!graph[x][z]){
trans=false;
break;
}
if(trans) printf("Yes\n");
else printf("No\n");
}
}
codevs 1019 集合论与图论的更多相关文章
- codevs——1019 集合论与图论
1019 集合论与图论 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 黄金 Gold 题解 查看运行结果 题目描述 Description 集合论与图论对于小松来说 ...
- 【BZOJ-2732】集合选数 状压DP (思路题)
2734: [HNOI2012]集合选数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1070 Solved: 623[Submit][Statu ...
- bzoj2734 集合选数
Description <集合论与图论>这门课程有一道作业题,要求同学们求出{1, 2, 3, 4, 5}的所有满足以 下条件的子集:若 x 在该子集中,则 2x 和 3x 不能在该子集中 ...
- 2734: [HNOI2012]集合选数 - BZOJ
Description <集合论与图论>这门课程有一道作业题,要求同学们求出{1, 2, 3, 4, 5}的所有满足以 下条件的子集:若 x 在该子集中,则 2x 和 3x 不能在该子集中 ...
- bzoj 2734: [HNOI2012]集合选数 状压DP
2734: [HNOI2012]集合选数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 560 Solved: 321[Submit][Status ...
- bzoj2734: [HNOI2012]集合选数
Description <集合论与图论>这门课程有一道作业题,要求同学们求出{1, 2, 3, 4, 5}的所有满足以 下条件的子集:若 x 在该子集中,则 2x 和 3x 不能在该子集中 ...
- 【BZOJ2734】【HNOI2012】集合选数(状态压缩,动态规划)
[BZOJ2734][HNOI2012]集合选数(状态压缩,动态规划) 题面 Description <集合论与图论>这门课程有一道作业题,要求同学们求出{1, 2, 3, 4, 5}的所 ...
- [HNOI2012]集合选数
题目描述 <集合论与图论>这门课程有一道作业题,要求同学们求出{1, 2, 3, 4, 5}的所有满足以 下条件的子集:若 x 在该子集中,则 2x 和 3x 不能在该子集中. 同学们不喜 ...
- bzoj 2734: [HNOI2012]集合选数
题目描述 <集合论与图论>这门课程有一道作业题,要求同学们求出{1, 2, 3, 4, 5}的所有满足以 下条件的子集:若 x 在该子集中,则 2x 和 3x 不能在该子集中. 同学们不喜 ...
随机推荐
- codeforces@281 B
shui #include<iostream> #include<cstdio> #include<cstring> #include<algorithm&g ...
- bzoj1012: [JSOI2008]最大数maxnumber(貌似是道线段树喔)
1012: [JSOI2008]最大数maxnumber 题目:传送门 题解: 发现自己空了一道水题... 1~210000建线段树,其实就是一道裸题... 单点修改+区间查询...1A~ 代码: # ...
- Struts2 | struts.xml文件中使用method属性和通配符简化action标签和Action处理类的编写
转自:https://www.jianshu.com/p/310e89ee762d 在Struts2框架中,我们知道基本的Action标签只能实现一个url请求对应一个Action处理类.那么我们如果 ...
- [luoguP4302] [SCOI2003] 字符串折叠 解题报告(区间DP)
题目链接:https://www.luogu.org/problemnew/show/P4302 题解: 我们考虑折叠一个区间里的字符串,怎么样才是最优的 1.把这个区间分成几部分分别折叠 2.把这个 ...
- spinlock参考资料
spinlock:http://irl.cs.ucla.edu/~yingdi/web/paperreading/smp_locking.pdf
- bzoj 2287: 【POJ Challenge】消失之物 动态规划
Code: #include<cstdio> #include<algorithm> #include<queue> #include<cstring> ...
- 使得nginx支持pathinfo访问模式
原理: 任意创建一个 in.php 文件: <?php echo '<pre>'; ...
- [Codeforces 841C]Leha and Function
题目大意:定义函数F(n,k)为[1,2,3,..n]中k个元素的子集中最小元素的数学期望.现在给你两个长度相等的数列A,B(A中元素严格大于B中元素),现在要你重新排列A,使得$\sum\limit ...
- 编码问题异常处理:UnicodeDecodeError: 'gbk' codec can't...
作为编码问题集合: 2)UnicodeDecodeError: 'utf-8' codec can't decode byte 0xbd in position 0: invalid start by ...
- [Python] Pandas load DataFrames
Create an empty Data frame with date index: import pandas as pd def test_run(): start_date='2017-11- ...