程序实现 softmax classifier, 含有一个隐含层的情况。activation function 是 ReLU : f(x)=max(0,x)

f1=w1x+b1

h1=max(0,f1)

f2=w2h1+b2

y=ef2i∑jef2j


function Out=Softmax_Classifier_1(train_x, train_y, opts) % setting learning parameters
step_size=opts.step_size;
reg=opts.reg;
batchsize = opts.batchsize;
numepochs = opts.numepochs;
K=opts.class;
h=opts.hidden; D=size(train_x, 2);
W1=0.01*randn(D,h);
b1=zeros(1,h);
W2=0.01*randn(h, K);
b2=zeros(1,K); loss(1 : numepochs)=0; num_examples=size(train_x, 1);
numbatches = num_examples / batchsize; for epoch=1:numepochs kk = randperm(num_examples);
loss(epoch)=0; % % tic;
% %
% % sprintf('epoch %d: \n' , epoch) for bat=1:numbatches batch_x = train_x(kk((bat - 1) * batchsize + 1 : bat * batchsize), :);
batch_y = train_y(kk((bat - 1) * batchsize + 1 : bat * batchsize), :); %% forward
f1=batch_x*W1+repmat(b1, batchsize, 1);
hiddenval_1=max(0, f1);
scores=hiddenval_1*W2+repmat(b2, batchsize, 1); %% the loss
exp_scores=exp(scores);
dd=repmat(sum(exp_scores, 2), 1, K);
probs=exp_scores./dd;
correct_logprobs=-log(sum(probs.*batch_y, 2));
data_loss=sum(correct_logprobs)/batchsize;
reg_loss=0.5*reg*sum(sum(W1.*W1))+0.5*reg*sum(sum(W2.*W2));
loss(epoch) =loss(epoch)+ data_loss + reg_loss; %% back propagation
dscores = probs-batch_y;
dscores=dscores/batchsize;
dW2=hiddenval_1'*dscores;
db2=sum(dscores); dhiddenval_1=dscores*W2';
mask=max(sign(hiddenval_1), 0);
df_1=dhiddenval_1.*mask;
dW1=batch_x'*df_1;
db1=sum(df_1); %% update
dW2=dW2+reg*W2;
dW1=dW1+reg*W1; W1=W1-step_size*dW1;
b1=b1-step_size*db1; W2=W2-step_size*dW2;
b2=b2-step_size*db2; end loss(epoch)=loss(epoch)/numbatches; if (mod(epoch, 10)==0)
sprintf('epoch: %d, training loss is %f: \n', epoch, loss(epoch))
end toc; end Out.W1=W1;
Out.b1=b1;
Out.b2=b2;
Out.W2=W2;
Out.loss=loss; end

机器学习 Softmax classifier (一个隐含层)的更多相关文章

  1. 机器学习 Softmax classifier (无隐含层)

    程序实现 Softmax classifer, 没有隐含层, f=wx+b y=efi∑jefj %% Softmax classifier function Out=Softmax_Classifi ...

  2. 基于MNIST数据集使用TensorFlow训练一个包含一个隐含层的全连接神经网络

    包含一个隐含层的全连接神经网络结构如下: 包含一个隐含层的神经网络结构图 以MNIST数据集为例,以上结构的神经网络训练如下: #coding=utf-8 from tensorflow.exampl ...

  3. ubuntu之路——day13 只用python的numpy在较为底层的阶段实现单隐含层神经网络

    首先感谢这位博主整理的Andrew Ng的deeplearning.ai的相关作业:https://blog.csdn.net/u013733326/article/details/79827273 ...

  4. 机器学习: Softmax Classifier (三个隐含层)

    程序实现 softmax classifier, 含有三个隐含层的情况.activation function 是 ReLU : f(x)=max(0,x) f1=w1x+b1 h1=max(0,f1 ...

  5. 机器学习:Softmax Classifier (两个隐含层)

    程序实现 softmax classifier, 含有两个隐含层的情况.activation function 是 ReLU : f(x)=max(0,x) f1=w1x+b1 h1=max(0,f1 ...

  6. 基于MNIST数据集使用TensorFlow训练一个没有隐含层的浅层神经网络

    基础 在参考①中我们详细介绍了没有隐含层的神经网络结构,该神经网络只有输入层和输出层,并且输入层和输出层是通过全连接方式进行连接的.具体结构如下: 我们用此网络结构基于MNIST数据集(参考②)进行训 ...

  7. 理解dropout——本质是通过阻止特征检测器的共同作用来防止过拟合 Dropout是指在模型训练时随机让网络某些隐含层节点的权重不工作,不工作的那些节点可以暂时认为不是网络结构的一部分,但是它的权重得保留下来(只是暂时不更新而已),因为下次样本输入时它可能又得工作了

    理解dropout from:http://blog.csdn.net/stdcoutzyx/article/details/49022443 http://www.cnblogs.com/torna ...

  8. [DeeplearningAI笔记]序列模型2.6Word2Vec/Skip-grams/hierarchical softmax classifier 分级softmax 分类器

    5.2自然语言处理 觉得有用的话,欢迎一起讨论相互学习~Follow Me 2.6 Word2Vec Word2Vec相对于原先介绍的词嵌入的方法来说更加的简单快速. Mikolov T, Chen ...

  9. MLP神经网络 隐含层节点数的设置】如何设置神经网络隐藏层 的神经元个数

    神经网络 隐含层节点数的设置]如何设置神经网络隐藏层 的神经元个数 置顶 2017年10月24日 14:25:07 开心果汁 阅读数:12968    版权声明:本文为博主原创文章,未经博主允许不得转 ...

随机推荐

  1. Beginning iOS Programming

    Beginning iOS Programming 2014年 published by Wrox

  2. 3.lombok系列3:lombok的实验类特性

    转自:https://blog.csdn.net/54powerman/article/details/72516755 lombok除了已经推荐使用的基本功能,还维护了一个创新型的注解,有些功能有违 ...

  3. mysql测试spring事务是否生效

    同时对三张表进行插入操作,事务保证完整性.下面进行简单测试: 1. 锁定表 锁定用户表 LOCK TABLES user WRITE; 查看表是否锁定: show ; 显示被锁定的表. 2. 验证在同 ...

  4. redhat6.5安装10201解决办法

    rpm --import /etc/pki/rpm-gpg/RPM*yum install -y  --skip-broken compat-libstdc++* elfutils-libelf* g ...

  5. Java Web学习总结(16)——JSP的九个内置对象

    一.JSP运行原理 每个JSP 页面在第一次被访问时,WEB容器都会把请求交给JSP引擎(即一个Java程序)去处理.JSP引擎先将JSP翻译成一个_jspServlet(实质上也是一个servlet ...

  6. session的生命周期是怎样的

    session的生命周期是怎样的 一.总结 一句话总结:Tomcat中Session的默认失效时间为20分钟.如果我们敲代码的时候把它设置成1个月,那么这一个月的数据会代替默认20分钟的数据,使ses ...

  7. amazeui学习笔记--css(常用组件11)--分页Pagination

    amazeui学习笔记--css(常用组件11)--分页Pagination 一.总结 1.分页使用:还是ul包li的形式: 分页组件,<ul> / <ol> 添加 .am-p ...

  8. JDBC 专题

    digest: getFetchSize()方法不是获得记录数,而是获得每次抓取的记录数,默认是0,也就是说不限制.可以用setFetchSize()来设置,而getFetchSize()是用来读出那 ...

  9. 1.3 Python基础知识 - 用户交互及传递参数

    一.用户交互 用户交互方面,每种开发语言都有不同的方式,例如shell语言用的是,“read -p "What is  your name ? " ”.python中是什么样子的呢 ...

  10. vue使用(三)

    本节目标:获取后端api数据 需求:一个按钮,点击之后将服务器上的数据获取到,并显示出来 方法一: 1. 准备工作, (1)安装官方插件 vuedemo02>npm install vue-re ...