Codeforces Beta Round #17

题目链接:点击我打开题目链接

大概题意:

给你 \(b\),\(n\),\(c\).

让你求:\((b)^{n-1}*(b-1)\%c\).

\(2<=b<=10^{10^6},1<=n<=10^{10^6},1<=c<=10^9\)

简明题解:

因为 \(b\) , \(n\)都太大了。关键是求 \((b)^{n-1}\%c\)

所以,我们可以利用欧拉函数 \(phi()\) 的性质。

对于\(a^{b} \% c\) 的形式,我们可以有:

当 \(a\),\(c\) 互质时有 \(a^{phi(c)} = 1( \mod c)\),

那么经过推导就有(有空写一下 \(Pre-knowledge\)):

\(a^b\%c=a^{(b\%phi(c))}\). (数论欧拉定理)

但是这个题上并没有说明 \(a\)与 \(c\) 互质。所以不能用这个方法。

所以正解是,我们可以学习一下广义欧拉定理(无互质要求),用这个来降幂: (广义欧拉定理):

\(a^b\%c≡a^{(b\%phi(c))\%c}\) \((b<phi(c))\)

\(a^b \%c= a^{(b\%phi(c)+phi(c))\%c}\) (\(b>=phi(c)\))

然后这题预处理一下 \(phi\)就可以解决了。

复杂度:大概是 \(sqrt(c) * log(c))+log(phi(c))\)

代码:

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=1000100;
char b[N],n[N];
int phi(int x)
{
int res=x;
for(int i=2;i*i<=x;i++)if(x%i==0)
{
res=res/i*(i-1);
while(x%i==0)x/=i;
}
if(x>1)res=res/x*(x-1);
return res;
}
int q_pow(int a,int k,int mod)
{
int res=1;
while(k)
{
if(k&1)res=1LL*res*a%mod;
a=1LL*a*a%mod;
k>>=1;
}
return res%mod;
}
int cal(char *str,int mod)
{
int res=0;
for(int i=0;str[i];i++)
{
res=(10LL*res + str[i]-'0') % mod;
}
return res;
}
int main()
{
int c;
scanf("%s%s%d",b,n,&c);
if(c==1)
{
cout<<1<<endl;
exit(0);
}
int B=cal(b,c);
int res=(B + c - 1) % c;
int Phi=phi(c);
int t=0;
for(int i=0;n[i];i++)
{
t = min(1000000000LL,10LL * t + n[i]-'0');
} if(t - 1 < Phi)
{
res = 1LL * res * q_pow(B,t-1,c)%c;
}
else
{
res = 1LL * res * q_pow(B,cal(n,Phi) + Phi - 1,c)%c;
}
printf("%d\n",(res + c - 1)%c + 1);
return 0;
}

Codeforces Beta Round #17 D. Notepad (数论 + 广义欧拉定理降幂)的更多相关文章

  1. Codeforces Beta Round #17 D.Notepad 指数循环节

    D. Notepad time limit per test 2 seconds memory limit per test 64 megabytes input standard input out ...

  2. Codeforces Beta Round #17 C. Balance DP

    C. Balance 题目链接 http://codeforces.com/contest/17/problem/C 题面 Nick likes strings very much, he likes ...

  3. Codeforces Beta Round #17 A - Noldbach problem 暴力

    A - Noldbach problem 题面链接 http://codeforces.com/contest/17/problem/A 题面 Nick is interested in prime ...

  4. Codeforces Beta Round #17 A.素数相关

    A. Noldbach problem Nick is interested in prime numbers. Once he read about Goldbach problem. It sta ...

  5. Codeforces Beta Round #17 C. Balance (字符串计数 dp)

    C. Balance time limit per test 3 seconds memory limit per test 128 megabytes input standard input ou ...

  6. Codeforces Beta Round #13 C. Sequence (DP)

    题目大意 给一个数列,长度不超过 5000,每次可以将其中的一个数加 1 或者减 1,问,最少需要多少次操作,才能使得这个数列单调不降 数列中每个数为 -109-109 中的一个数 做法分析 先这样考 ...

  7. Codeforces Beta Round #80 (Div. 2 Only)【ABCD】

    Codeforces Beta Round #80 (Div. 2 Only) A Blackjack1 题意 一共52张扑克,A代表1或者11,2-10表示自己的数字,其他都表示10 现在你已经有一 ...

  8. Codeforces Beta Round #62 题解【ABCD】

    Codeforces Beta Round #62 A Irrational problem 题意 f(x) = x mod p1 mod p2 mod p3 mod p4 问你[a,b]中有多少个数 ...

  9. Codeforces Beta Round #83 (Div. 1 Only)题解【ABCD】

    Codeforces Beta Round #83 (Div. 1 Only) A. Dorm Water Supply 题意 给你一个n点m边的图,保证每个点的入度和出度最多为1 如果这个点入度为0 ...

随机推荐

  1. H+后台主题UI框架---整理

    本篇文章是对H+这种框架进行整理,顺便了解一下标准的代码规范的写法. 一.表单: 1).下面是一个基本表单: 现在来看这个表单的结构: 1.整个表单的外框结构是一个div,至于padding和marg ...

  2. 安卓https

    http://www.tuicool.com/articles/NrmE3e http://blog.csdn.net/guestcode/article/details/50194357 http: ...

  3. UDP连接调用connect()函数

    UDP是一个无连接的协议,它没有像TCP中EOF之类的东西. 8.11 UDP的connect函数 除非套接字已连接,否则异步错误是不会反悔到UDP套接字的. 我们确实能够给UDP套接字调用conne ...

  4. .Net写的比较清晰的接口

    尼玛,隔行如隔山. .Net真操蛋. /// <summary> /// 加入群 /// </summary> /// <returns></returns& ...

  5. HDU 2633 Getting Driving License(模拟)

    Getting Driving License Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/ ...

  6. Spark RPC

    在Spark中,对于网络调用的底层封装(粘包拆包,编解码,链路管理等)都是在common/network-common包中实现的(详见[common/network-common]).在common/ ...

  7. JS实现下拉菜单的功能

    <!DOCTYPE html> <html> <head> <meta charset = "utf8"> <title> ...

  8. coverage python 代码覆盖率工具使用(django 使用)

    1. 安装包 pip install coverage 2.启动程序 coverage run -m pytest 3.获取html格式的报告文件 coverage html 4.创建配置文件 .co ...

  9. Java中JVM虚拟机详解

    1. 什么是JVM? JVM是Java Virtual Machine(Java虚拟机)的缩写,JVM是一种用于计算设备的规范,它是一个虚构出来的计算机,是通过在实际的计算机上仿真模拟各种计算机功能来 ...

  10. 洛谷——P2695 骑士的工作

    https://www.luogu.org/problem/show?pid=2695 题目背景 你作为一个村的村长,保卫村庄是理所当然的了.今天,村庄里来了一只恶龙,他有n个头,恶龙到处杀人放火.你 ...