这道题就是Tsp问题,稍微加了些改变

注意以下问题

(1)每个点可以经过多次,这里就可以用弗洛伊德初始化最短距离

(2)在循环中集合可以用S表示更清晰一些

(3)第一维为状态,第二维为在哪个点,不要写混。

(4)在dp过程中0这个点是不用的,只用到1到n这个点

而实际上dp过程中用的是0到n-1,所以就枚举1到n,然后涉及到集合的地方就写i-1

其他地方如dp的第二维,距离这些都不变。

还有一个方法,是我一开始想的方法,就是在输入的时候就把0放到第n个点,其他下标-1

(4)这道题求最小值,一定要先初始化为最大值

方法一(涉及到集合的时候下标-1)

#include<cstdio>
#include<cstring>
#include<algorithm>
#define REP(i, a, b) for(int i = (a); i < (b); i++)
#define _for(i, a, b) for(int i = (a); i <= (b); i++)
using namespace std; const int MAXN = 15;
int dist[MAXN][MAXN], dp[1 << 11][MAXN], n; int main()
{
while(~scanf("%d", &n) && n)
{
_for(i, 0, n)
_for(j, 0, n)
scanf("%d", &dist[i][j]); _for(k, 0, n)
_for(i, 0, n)
_for(j, 0, n)
dist[i][j] = min(dist[i][j], dist[i][k] + dist[k][j]); memset(dp, 0x3f, sizeof(dp));
_for(i, 1, n) dp[1 << (i - 1)][i] = dist[0][i];
REP(S, 0, 1 << n)
_for(i, 1, n) if(S & (1 << (i - 1)))
_for(j, 1, n) if(S & (1 << (j - 1)))
dp[S][i] = min(dp[S][i], dp[S^(1<<(i-1))][j] + dist[j][i]); int ans = 1e9;
_for(i, 1, n)
ans = min(ans, dp[(1 << n) - 1][i] + dist[i][0]);
printf("%d\n", ans);
} return 0;
}

方法二(直接在输入的时候改变)

#include<cstdio>
#include<cstring>
#include<algorithm>
#define REP(i, a, b) for(int i = (a); i < (b); i++)
#define _for(i, a, b) for(int i = (a); i <= (b); i++)
using namespace std; const int MAXN = 15;
int dist[MAXN][MAXN], dp[1 << 11][MAXN], n; int main()
{
while(~scanf("%d", &n) && n)
{
_for(i, 0, n)
_for(j, 0, n)
scanf("%d", &dist[(!i ? n : i - 1)][(!j ? n : j - 1)]); _for(k, 0, n)
_for(i, 0, n)
_for(j, 0, n)
dist[i][j] = min(dist[i][j], dist[i][k] + dist[k][j]); memset(dp, 0x3f, sizeof(dp));
REP(i, 0, n) dp[1 << i][i] = dist[n][i];
REP(i, 0, 1 << n)
REP(j, 0, n) if(i & (1 << j))
REP(k, 0, n) if(i & (1 << k))
if(j != k)
dp[i][j] = min(dp[i][j], dp[i^(1<<j)][k] + dist[k][j]); int ans = 1e9;
REP(i, 0, n)
ans = min(ans, dp[(1 << n) - 1][i] + dist[i][n]);
printf("%d\n", ans);
} return 0;
}

poj 3311 Hie with the Pie (状压dp) (Tsp问题)的更多相关文章

  1. POJ 3311 Hie with the Pie (状压DP)

    dp[i][j][k] i代表此层用的状态序号 j上一层用的状态序号 k是层数&1(滚动数组) 标准流程 先预处理出所有合法数据存在status里 然后独立处理第一层 然后根据前一层的max推 ...

  2. 【鸽】poj3311 Hie with the Pie[状压DP+Floyd]

    题解网上一搜一大坨的,不用复述了吧. 只是觉得网上dp方程没多大问题,但是状态的表示含义模糊.不同于正常哈密顿路径求解,状态表示应当改一下. 首先定义一次移动为从一个点经过若干个点到达另一个点,则$f ...

  3. East Central North America 2006 Hie with the Pie /// 状压dp oj22470

    题目大意: 输入n,有n个地方(1~n)需要送pizza pizza点为0点 接下来n+1行每行n+1个值 表示 i 到 j 的路径长度 输出从0点到各点送pizza最后回到0点的最短路(点可重复走) ...

  4. poj 2288 Islands and Bridges (状压dp+Tsp问题)

    这道题千辛万苦啊! 这道题要涉及到当前点和前面两个点,那就设dp[state][i][j]为当前状态为state,当前点为i,前一个点为j 这个状态表示和之前做炮兵那题很像,就是涉及到三个点时,就多设 ...

  5. poj 3311 Hie with the Pie 经过所有点(可重)的最短路径 floyd + 状压dp

    题目链接 题意 给定一个\(N\)个点的完全图(有向图),求从原点出发,经过所有点再回到原点的最短路径长度(可重复经过中途点). 思路 因为可多次经过同一个点,所以可用floyd先预处理出每两个点之间 ...

  6. POJ 3311 Hie with the Pie (状压DP)

    题意: 每个点都可以走多次的TSP问题:有n个点(n<=11),从点1出发,经过其他所有点至少1次,并回到原点1,使得路程最短是多少? 思路: 同HDU 5418 VICTOR AND WORL ...

  7. POJ3311 Hie with the Pie 【状压dp/TSP问题】

    题目链接:http://poj.org/problem?id=3311 Hie with the Pie Time Limit: 2000MS   Memory Limit: 65536K Total ...

  8. poj 3311 Hie with the Pie

    floyd,旅游问题每个点都要到,可重复,最后回来,dp http://poj.org/problem?id=3311 Hie with the Pie Time Limit: 2000MS   Me ...

  9. Hie with the Pie(POJ3311+floyd+状压dp+TSP问题dp解法)

    题目链接:http://poj.org/problem?id=3311 题目: 题意:n个城市,每两个城市间都存在距离,问你恰好经过所有城市一遍,最后回到起点(0)的最短距离. 思路:我们首先用flo ...

  10. POJ 3311 Hie with the Pie(Floyd+状态压缩DP)

    题是看了这位的博客之后理解的,只不过我是又加了点简单的注释. 链接:http://blog.csdn.net/chinaczy/article/details/5890768 我还加了一些注释代码,对 ...

随机推荐

  1. C# 日期格式

    # DateTime日期格式化 在C#中DateTime是一个包含日期.时间的类型,此类型通过ToString()转换为字符串时,可根据传入给Tostring()的参数转换为多种字符串格式. 目录 1 ...

  2. FreeMarker 语法 date 类型处理

    一.java 代码 @Test public void testFreeMarker() throws Exception { //1.创建一个模板文件 //2.创建一个Configuration对象 ...

  3. BA-siemens-insight-event builder使用

    event builder功能主要是用来给report使用的,作为一个独立的对象,这个对象的功能就是收集点位的信息,如果再使用report功能就可以显示或输出点位的信息.

  4. BA-DDC与PLC的比较(转载)

    1.概念 DDC(Direct Digital Control ) ,根据字面的意思为直接的数据控制,它包含了对采集数据的数字化以及对数据的数字处理.DDC的产生式随着楼宇控制.能源管理的需求,以及为 ...

  5. ZOJ 2913 Bus Pass (近期的最远BFS HDU2377)

    题意  在全部城市中找一个中心满足这个中心到全部公交网站距离的最大值最小 输出最小距离和满足最小距离编号最小的中心 最基础的BFS  对每一个公交网站BFS  dis[i]表示编号为i的点到全部公交网 ...

  6. JAVA实现远程SSH连接linux并运行命令

    博客转移到http://blog.codeconch.com

  7. SGU 531 - Bonnie and Clyde 预处理+二分

    Bonnie and Clyde Description Bonnie and Clyde are into robbing banks. This time their target is a to ...

  8. gdbserver 远程调试问题:设置文件和so搜索路径

    编写一个必定crash 的程序 #include <stdio.h> void crash(){ char *a=0; *a=0; } int main() { printf(" ...

  9. 【HDU 5015】233 Matrix

    [题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=5015 [算法] 矩阵乘法 [代码] #include<bits/stdc++.h> u ...

  10. Java并发包

    刚看到一篇总结的比较全的JUC包总结,转载如下: 1. java.util.concurrent - Java 并发工具包 Java 5 添加了一个新的包到 Java 平台,java.util.con ...