Palindromic Subsequence

Time Limit: 3000ms
Memory Limit: 131072KB

This problem will be judged on UVA. Original ID: 11404
64-bit integer IO format: %lld      Java class name: Main

 

A Subsequence is a sequence obtained by deleting zero or more characters in a string. A Palindrome is a string which when read from left to right, reads same as when read from right to left. Given a string, find the longest palindromic subsequence. If there are many answers to it, print the one that comes lexicographically earliest.

Constraints

  • Maximum length of string is 1000.
  • Each string has characters `a' to `z' only.

Input

Input consists of several strings, each in a separate line. Input is terminated by EOF.

Output

For each line in the input, print the output in a single line.

Sample Input

aabbaabb
computer
abzla
samhita

Sample Output

aabbaa
c
aba
aha 解题:求最长的且字典序最小的回文子序列。把原串逆转,然后与原串求LCS。LCS的的前半部分一定要求的回文序列的前半部分,但是后半部分可能不是。
 #include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <climits>
#include <vector>
#include <queue>
#include <cstdlib>
#include <string>
#include <set>
#include <stack>
#define LL long long
#define pii pair<int,int>
#define INF 0x3f3f3f3f
using namespace std;
const int maxn = ;
struct DP{
int len;
string str;
};
DP dp[maxn][maxn];
char sa[maxn],sb[maxn];
int main() {
while(gets(sa)){
int len = strlen(sa);
strcpy(sb,sa);
reverse(sb,sb+len);
for(int i = ; i <= len; ++i){
dp[][i].len = ;
dp[][i].str = "";
}
for(int i = ; i <= len; ++i){
for(int j = ; j <= len; ++j){
if(sa[i-] == sb[j-]){
dp[i][j].len = dp[i-][j-].len+;
dp[i][j].str = dp[i-][j-].str + sa[i-];
}else if(dp[i-][j].len > dp[i][j-].len){
dp[i][j].len = dp[i-][j].len;
dp[i][j].str = dp[i-][j].str;
}else if(dp[i-][j].len < dp[i][j-].len){
dp[i][j].len = dp[i][j-].len;
dp[i][j].str = dp[i][j-].str;
}else{
dp[i][j].len = dp[i-][j].len;
dp[i][j].str = min(dp[i-][j].str,dp[i][j-].str);
}
}
}
string ans = dp[len][len].str;
if(dp[len][len].len&){
for(int i = ; i < dp[len][len].len>>; ++i)
putchar(ans[i]);
for(int i = dp[len][len].len>>; i >= ; --i)
putchar(ans[i]);
putchar('\n');
}else{
for(int i = ; i+ < dp[len][len].len>>; ++i)
putchar(ans[i]);
for(int i = dp[len][len].len>>; i >= ; --i)
putchar(ans[i]);
putchar('\n');
}
}
return ;
}

UVA 11404 Palindromic Subsequence的更多相关文章

  1. UVA 11404 Palindromic Subsequence[DP LCS 打印]

    UVA - 11404 Palindromic Subsequence 题意:一个字符串,删去0个或多个字符,输出字典序最小且最长的回文字符串 不要求路径区间DP都可以做 然而要字典序最小 倒过来求L ...

  2. LPS UVA 11404 Palindromic Subsequence

    题目传送门 题意:求LPS (Longest Palidromic Subsequence) 最长回文子序列.和回文串不同,子序列是可以不连续的. 分析:1. 推荐->还有一种写法是用了LCS的 ...

  3. UVa 11404 Palindromic Subsequence (LCS)

    题意:给定一个字符串,问删除一些字符,使得它成为一个最长回访串,如果有多个,输出字典序最小的那个. 析: 我们可以把原字符串反转,然后求两个串的LCS,就得到最长回文串,不过要注意一些细节. 代码如下 ...

  4. 【UVa】Palindromic Subsequence(dp+字典序)

    http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=465&page=s ...

  5. uva 11404 dp

    UVA 11404 - Palindromic Subsequence 求给定字符串的最长回文子序列,长度一样的输出字典序最小的. 对于 [l, r] 区间的最长回文串.他可能是[l+1, r] 和[ ...

  6. UVA 11404 五 Palindromic Subsequence

     Palindromic Subsequence Time Limit:3000MS     Memory Limit:0KB     64bit IO Format:%lld & %llu ...

  7. 【UVA 11404】Palindromic Subsequence

    UVA 11404 我用了最暴力的做法:考虑\(dp[i][j]\)表示\(S[i..j]\)的最长回文子序列的长度以及字典序最小的那个. 然后转移的时候如下处理:首先\(dp[i][j]\)要取\( ...

  8. [leetcode-516-Longest Palindromic Subsequence]

    Given a string s, find the longest palindromic subsequence's length in s. You may assume that the ma ...

  9. [LeetCode] Longest Palindromic Subsequence 最长回文子序列

    Given a string s, find the longest palindromic subsequence's length in s. You may assume that the ma ...

随机推荐

  1. 查看eclipse的安装路径

    在桌面上快捷方式右键  点击属性  起始位置便是.

  2. myeclipse集成svn

    svn安装 这个我在博客中的代码管理里面有些,也是一直next.svn代码管理版本号管理器安装好之后. myeclipse的svn插件 方法一: 然后配置MyEclipse的SVN插件,将插件下载下来 ...

  3. hdu 4997 Biconnected

    这题主要是计算连通子图的个数(c)和不连通子图的个数(dc)还有连通度为1的子图的个数(c1)和连通度为2以上的子图的个数(c2)之间的转化关系 主要思路大概例如以下: 用状态压缩的方法算出状态为x的 ...

  4. Qt on Android:资源文件系统qrc与assets

    使用 Qt 为 Android 开发应用时,有时我们的应用会携带一些资源文件,如 png . jpg 等,也可能有一些配置文件,如 xml 等.这些文件放在哪里呢? 有两种方式: qrc assets ...

  5. 使用CNN做电影评论的负面检测——本质上感觉和ngram或者LSTM同,因为CNN里图像检测卷积一般是3x3,而文本分类的话是直接是一维的3、4、5

    代码如下: from __future__ import division, print_function, absolute_import import tensorflow as tf impor ...

  6. 杂项:WCF

    ylbtech-杂项:WCF Windows Communication Foundation(WCF)是由微软开发的一系列支持数据通信的应用程序框架,可以翻译为Windows 通讯开发平台. 整合了 ...

  7. POJ 3628 01背包 OR 状压

    思路: 1.01背包 先找到所有奶牛身高和与B的差. 然后做一次01背包即可 01背包的容积和价格就是奶牛们身高. 最后差值一减输出结果就大功告成啦! 2. 搜索 这思路很明了吧... 搜索的确可以过 ...

  8. linux 命令cp拷贝

    linux复制指定目录下的全部文件到另一个目录中复制指定目录下的全部文件到另一个目录中文件及目录的复制是经常要用到的.linux下进行复制的命令为cp.假设复制源目录 为 dir1 ,目标目录为dir ...

  9. Android Studio 一些注意事项(自用,不定期更新)

    1,Android Studio 版本的选择 写这篇的时候,官方版本已经到了 v3.2.0,而我习惯使用的版本是 v2.3.1,因为这个版本有自带sdk的安装版,比较方便, 同时,v2.3.1 新建项 ...

  10. EF Code First 使用 代码优先迁移(二)

    第一步:如果不是建立的MVC项目,可能需要在控制台输入 :Install-Package EntityFramework 删除之后在执行Enable-Migrations 第二步:添加你需要修改的属性 ...