前一篇文章介绍了Trie树。它实现简单但空间效率低。假设要支持26个英文字母,每一个节点就要保存26个指针,因为节点数组中保存的空指针占用了太多内存。让我来看看Ternary Tree。

  When you have to store a set of strings, what data structure should you use?

You could use hash tables, which sprinkle the strings throughout an array. Access is fast, but information about relative order is lost. Another option is the use of binary search trees, which store strings in order, and are fairly fast. Or you could use digital search tries, which are lightning fast, but use lots of space.

  In this article, we’ll examine ternary search trees, which combine the time efficiency of digital tries with the space efficiency of binary search trees. The resulting structure is faster than hashing for many typical search problems, and supports a broader range of useful problems and operations. Ternary searches are faster than hashing and more powerful, too.

  三叉搜索树Ternary Tree,结合了字典树的时间效率和二叉搜索树的空间效率长处。

为了避免多余的指针占用内存,每一个Trie节点不再用数组来表示,而是表示成“树中有树”。Trie节点里每一个非空指针都会在三叉搜索树里得到属于它自己的节点。

  Each node has 3 children: smaller (left), equal (middle), larger (right).



  Follow links corresponding to each character in the key.

   ・If less, take left link; if greater, take right link.

   ・If equal, take the middle link and move to the next key character.

  Search hit. Node where search ends has a non-null value.

  Search miss. Reach a null link or node where search ends has null value.





// C program to demonstrate Ternary Search Tree (TST) insert, travese
// and search operations
#include <stdio.h>
#include <stdlib.h>
#define MAX 50 // A node of ternary search tree
struct Node
{
char data; // True if this character is last character of one of the words
unsigned isEndOfString: 1; struct Node *left, *eq, *right;
}; // A utility function to create a new ternary search tree node
struct Node* newNode(char data)
{
struct Node* temp = (struct Node*) malloc(sizeof( struct Node ));
temp->data = data;
temp->isEndOfString = 0;
temp->left = temp->eq = temp->right = NULL;
return temp;
} // Function to insert a new word in a Ternary Search Tree
void insert(struct Node** root, char *word)
{
// Base Case: Tree is empty
if (!(*root))
*root = newNode(*word); // If current character of word is smaller than root's character,
// then insert this word in left subtree of root
if ((*word) < (*root)->data)
insert(&( (*root)->left ), word); // If current character of word is greate than root's character,
// then insert this word in right subtree of root
else if ((*word) > (*root)->data)
insert(&( (*root)->right ), word); // If current character of word is same as root's character,
else
{
if (*(word+1))
insert(&( (*root)->eq ), word+1); // the last character of the word
else
(*root)->isEndOfString = 1;
}
} // A recursive function to traverse Ternary Search Tree
void traverseTSTUtil(struct Node* root, char* buffer, int depth)
{
if (root)
{
// First traverse the left subtree
traverseTSTUtil(root->left, buffer, depth); // Store the character of this node
buffer[depth] = root->data;
if (root->isEndOfString)
{
buffer[depth+1] = '\0';
printf( "%s\n", buffer);
} // Traverse the subtree using equal pointer (middle subtree)
traverseTSTUtil(root->eq, buffer, depth + 1); // Finally Traverse the right subtree
traverseTSTUtil(root->right, buffer, depth);
}
} // The main function to traverse a Ternary Search Tree.
// It mainly uses traverseTSTUtil()
void traverseTST(struct Node* root)
{
char buffer[MAX];
traverseTSTUtil(root, buffer, 0);
} // Function to search a given word in TST
int searchTST(struct Node *root, char *word)
{
if (!root)
return 0; if (*word < (root)->data)
return searchTST(root->left, word); else if (*word > (root)->data)
return searchTST(root->right, word); else
{
if (*(word+1) == '\0')
return root->isEndOfString; return searchTST(root->eq, word+1);
}
} // Driver program to test above functions
int main()
{
struct Node *root = NULL; insert(&root, "cat");
insert(&root, "cats");
insert(&root, "up");
insert(&root, "bug"); printf("Following is traversal of ternary search tree\n");
traverseTST(root); printf("\nFollowing are search results for cats, bu and cat respectively\n");
searchTST(root, "cats")? printf("Found\n"): printf("Not Found\n");
searchTST(root, "bu")? printf("Found\n"): printf("Not Found\n");
searchTST(root, "cat")? printf("Found\n"): printf("Not Found\n"); return 0;
}

Output:

Following is traversal of ternary search tree

bug

cat

cats

up

Following are search results for cats, bu and cat respectively

Found

Not Found

Found

Time Complexity: The time complexity of the ternary search tree operations is similar to that of binary search tree. i.e. the insertion, deletion and search operations take time proportional to the height of the ternary search tree. The space is proportional to the length of the string to be stored.

Hashing.

・Need to examine entire key.

・Search hits and misses cost about the same.

・Performance relies on hash function.

・Does not support ordered symbol table operations.

TSTs.

・Works only for string (or digital) keys.

・Only examines just enough key characters.

・Search miss may involve only a few characters.

・Supports ordered symbol table operations (plus extras!). Red-black BST.

・Performance guarantee: log N key compares.

・Supports ordered symbol table API.

Hash tables.

・Performance guarantee: constant number of probes.

・Requires good hash function for key type.

Tries. R-way, TST.

・Performance guarantee: log N characters accessed.

・Supports character-based operations.

Ternary Tree的更多相关文章

  1. 数据结构《17》---- 自动补齐之《二》----Ternary Search Tree

    一. 序言 上一篇文章中,给出了 trie 树的一个实现.可以看到,trie 树有一个巨大的弊病,内存占用过大. 本文给出另一种数据结构来解决上述问题---- Ternary Search Tree ...

  2. Trie和Ternary Search Tree介绍

    Trie树 Trie树,又称字典树,单词查找树或者前缀树,是一种用于快速检索的多叉树结构,如英文字母的字典树是一个26叉树,数字的字典树是一个10叉树. Trie树与二叉搜索树不同,键不是直接保存在节 ...

  3. 数据结构《17》---- 自己主动补齐之《二》----Ternary Search Tree

    一. 序言 上一篇文章中,给出了 trie 树的一个实现. 能够看到,trie 树有一个巨大的弊病,内存占用过大. 本文给出还有一种数据结构来解决上述问题---- Ternary Search Tre ...

  4. IK分词器原理与源码分析

    原文:http://3dobe.com/archives/44/ 引言 做搜索技术的不可能不接触分词器.个人认为为什么搜索引擎无法被数据库所替代的原因主要有两点,一个是在数据量比较大的时候,搜索引擎的 ...

  5. 原创:Solr Wiki 中关于Suggester(搜索推荐)的简单解读

       Solr Wiki Suggester Suggester - a flexible "autocomplete" component.(搜索推荐) A common nee ...

  6. 计算广告(5)----query意图识别

    目录: 一.简介: 1.用户意图识别概念 2.用户意图识别难点 3.用户意图识别分类 4.意图识别方法: (1)基于规则 (2)基于穷举 (3)基于分类模型 二.意图识别具体做法: 1.数据集 2.数 ...

  7. 编解码再进化:Ali266 与下一代视频技术

    过去的一年见证了人类百年不遇的大事记,也见证了多种视频应用的厚积薄发.而因此所带来的视频数据量的爆发式增长更加加剧了对高效编解码这样的底层硬核技术的急迫需求. 新视频编解码标准 VVC 定稿不久之后, ...

  8. Ternary Search Tree 应用--搜索框智能提示

    前面介绍了Ternary Search Tree和它的实现,那么可以用Ternary Search Tree来实现搜索框的只能提示,因为Ternary Search Tree的前缀匹配效率是非常高的, ...

  9. Trie(前缀树)和ternary trie和binary search tree

    1 什么是trie trie是一棵多叉树,假如存放的是由26个字母(不区分大小写)构成的字符串的话,那么就是一棵26叉树. trie树是一棵前缀树,因为每个结点只保存字符串中的一个字符,整个字符串保存 ...

随机推荐

  1. 命令alias、gerp、find及基础Shell脚本

    一. alias 命令:系统设置命令别名 用法:alias [-p] [name[=value] ... ]    注意‘=’和字符串之间不能包含空格 显示当前设置的别名:alias 或 alias ...

  2. 巧用MAC地址表

    对于身处网络环境的人来说,不少朋友应该遇到过这种的情况:某一个终端找不到接在了哪一个交换机口上,也不知道数据包怎样走的. ok,那么这时候MAC地址表就作用了,拿下图的实验环境(H3C)来说好了 环境 ...

  3. 01-JS起步

    01-JS起步

  4. Java代码规范文档

    NOTE:以下部分为一个简要的编码规范,更多规范请参考 ORACLE 官方文档. 地址:http://www.oracle.com/technetwork/java/codeconventions-1 ...

  5. ZOJ 2588 Burning Bridges(无向连通图求割边)

    题目地址:ZOJ 2588 由于数组开小了而TLE了..这题就是一个求无向连通图最小割边.仅仅要推断dfn[u]是否<low[v],由于low指的当前所能回到的祖先的最小标号,增加low[v]大 ...

  6. zzuli--1812--sort(模拟水题)

    1812: sort Time Limit: 1 Sec  Memory Limit: 128 MB Submit: 158  Solved: 30 SubmitStatusWeb Board Des ...

  7. 字典(dictionary)与映射(map)

    1. 字典:key-value 键值对 反转字典:reverse_dict = dict(zip(D.values(), D.keys())) 前提要保证 D 的 value 不会出现重复,因为字典反 ...

  8. .net 项目分层及规范

       1.解决方案命名:公司简称+产品名称.如ABCSOft.BBS 2.解决方案文件夹:以数字排序例如:01.Web表示页面层:02.IBusinessLogic表示业务逻辑接口:03.Bussin ...

  9. 开源系统源码分析(filter.class.php)

    <?php class baseValidater { //最大参数个数 const MAX_ARGS=3; public static function checkBool($var) { r ...

  10. 紫书 例题 9-3 UVa 1347 ( 状态设计)

    首先做一个转化,这种转化很常见. 题目里面讲要来回走一遍,所以就转化成两个从起点到终点,路径不重合 那么很容易想到用f[i][j]表示第一个走到i,第二个人走到j还需要走的距离 但是这里无法保证路径不 ...