通常对数据的矩阵进行操作,就用numpy操作,打开txt文件
使用help()去查询文档,可以看到官方的注释
import numpy
path = r'F:\数据分析专用\数据分析与机器学习\world_alcohol.txt'
world_alchol = numpy.genfromtxt(path, delimiter=",", dtype=str)
print(type(world_alchol))
print(world_alchol)
print(help(numpy.genfromtxt))
<class 'numpy.ndarray'>
[['Year' 'WHO region' 'Country' 'Beverage Types' 'Display Value']
['' 'Western Pacific' 'Viet Nam' 'Wine' '']
['' 'Americas' 'Uruguay' 'Other' '0.5']
...
['' 'Africa' 'Malawi' 'Other' '0.75']
['' 'Americas' 'Bahamas' 'Wine' '1.5']
['' 'Africa' 'Malawi' 'Spirits' '0.31']]
Help on function genfromtxt in module numpy.lib.npyio: genfromtxt(fname, dtype=<class 'float'>, comments='#', delimiter=None, skip_header=0, skip_footer=0, converters=None, missing_values=None, filling_values=None, usecols=None, names=None, excludelist=None, deletechars=None, replace_space='_', autostrip=False, case_sensitive=True, defaultfmt='f%i', unpack=None, usemask=False, loose=True, invalid_raise=True, max_rows=None, encoding='bytes')
Load data from a text file, with missing values handled as specified. Each line past the first `skip_header` lines is split at the `delimiter`
character, and characters following the `comments` character are discarded. Parameters
----------
fname : file, str, pathlib.Path, list of str, generator
File, filename, list, or generator to read. If the filename
extension is `.gz` or `.bz2`, the file is first decompressed. Note
that generators must return byte strings in Python 3k. The strings
in a list or produced by a generator are treated as lines.
dtype : dtype, optional
Data type of the resulting array.
If None, the dtypes will be determined by the contents of each
column, individually.
comments : str, optional
The character used to indicate the start of a comment.
All the characters occurring on a line after a comment are discarded
delimiter : str, int, or sequence, optional
The string used to separate values. By default, any consecutive
whitespaces act as delimiter. An integer or sequence of integers
can also be provided as width(s) of each field.
skiprows : int, optional
`skiprows` was removed in numpy 1.10. Please use `skip_header` instead.
skip_header : int, optional
The number of lines to skip at the beginning of the file.
skip_footer : int, optional
The number of lines to skip at the end of the file.
converters : variable, optional
The set of functions that convert the data of a column to a value.
The converters can also be used to provide a default value
for missing data: ``converters = {3: lambda s: float(s or 0)}``.
missing : variable, optional
`missing` was removed in numpy 1.10. Please use `missing_values`
instead.
missing_values : variable, optional
The set of strings corresponding to missing data.
filling_values : variable, optional
The set of values to be used as default when the data are missing.
usecols : sequence, optional
Which columns to read, with 0 being the first. For example,
``usecols = (1, 4, 5)`` will extract the 2nd, 5th and 6th columns.
names : {None, True, str, sequence}, optional
If `names` is True, the field names are read from the first line after
the first `skip_header` lines. This line can optionally be proceeded
by a comment delimeter. If `names` is a sequence or a single-string of
comma-separated names, the names will be used to define the field names
in a structured dtype. If `names` is None, the names of the dtype
fields will be used, if any.
excludelist : sequence, optional
A list of names to exclude. This list is appended to the default list
['return','file','print']. Excluded names are appended an underscore:
for example, `file` would become `file_`.
deletechars : str, optional
A string combining invalid characters that must be deleted from the
names.
defaultfmt : str, optional
A format used to define default field names, such as "f%i" or "f_%02i".
autostrip : bool, optional
Whether to automatically strip white spaces from the variables.
replace_space : char, optional
Character(s) used in replacement of white spaces in the variables
names. By default, use a '_'.
case_sensitive : {True, False, 'upper', 'lower'}, optional
If True, field names are case sensitive.
If False or 'upper', field names are converted to upper case.
If 'lower', field names are converted to lower case.
unpack : bool, optional
If True, the returned array is transposed, so that arguments may be
unpacked using ``x, y, z = loadtxt(...)``
usemask : bool, optional
If True, return a masked array.
If False, return a regular array.
loose : bool, optional
If True, do not raise errors for invalid values.
invalid_raise : bool, optional
If True, an exception is raised if an inconsistency is detected in the
number of columns.
If False, a warning is emitted and the offending lines are skipped.
max_rows : int, optional
The maximum number of rows to read. Must not be used with skip_footer
at the same time. If given, the value must be at least 1. Default is
to read the entire file. .. versionadded:: 1.10.0
encoding : str, optional
Encoding used to decode the inputfile. Does not apply when `fname` is
a file object. The special value 'bytes' enables backward compatibility
workarounds that ensure that you receive byte arrays when possible
and passes latin1 encoded strings to converters. Override this value to
receive unicode arrays and pass strings as input to converters. If set
to None the system default is used. The default value is 'bytes'. .. versionadded:: 1.14.0 Returns
-------
out : ndarray
Data read from the text file. If `usemask` is True, this is a
masked array. See Also
--------
numpy.loadtxt : equivalent function when no data is missing. Notes
-----
* When spaces are used as delimiters, or when no delimiter has been given
as input, there should not be any missing data between two fields.
* When the variables are named (either by a flexible dtype or with `names`,
there must not be any header in the file (else a ValueError
exception is raised).
* Individual values are not stripped of spaces by default.
When using a custom converter, make sure the function does remove spaces. References
----------
.. [1] NumPy User Guide, section `I/O with NumPy
<http://docs.scipy.org/doc/numpy/user/basics.io.genfromtxt.html>`_. Examples
---------
>>> from io import StringIO
>>> import numpy as np Comma delimited file with mixed dtype >>> s = StringIO("1,1.3,abcde")
>>> data = np.genfromtxt(s, dtype=[('myint','i8'),('myfloat','f8'),
... ('mystring','S5')], delimiter=",")
>>> data
array((1, 1.3, 'abcde'),
dtype=[('myint', '<i8'), ('myfloat', '<f8'), ('mystring', '|S5')]) Using dtype = None >>> s.seek(0) # needed for StringIO example only
>>> data = np.genfromtxt(s, dtype=None,
... names = ['myint','myfloat','mystring'], delimiter=",")
>>> data
array((1, 1.3, 'abcde'),
dtype=[('myint', '<i8'), ('myfloat', '<f8'), ('mystring', '|S5')]) Specifying dtype and names >>> s.seek(0)
>>> data = np.genfromtxt(s, dtype="i8,f8,S5",
... names=['myint','myfloat','mystring'], delimiter=",")
>>> data
array((1, 1.3, 'abcde'),
dtype=[('myint', '<i8'), ('myfloat', '<f8'), ('mystring', '|S5')]) An example with fixed-width columns >>> s = StringIO("11.3abcde")
>>> data = np.genfromtxt(s, dtype=None, names=['intvar','fltvar','strvar'],
... delimiter=[1,3,5])
>>> data
array((1, 1.3, 'abcde'),
dtype=[('intvar', '<i8'), ('fltvar', '<f8'), ('strvar', '|S5')]) None

用array输入数组

vector = numpy.array([5, 10, 15, 20])
matrix = numpy.array([[5, 10, 15], [20, 25, 30], [35, 40, 45]])
print(vector)
print(matrix)

输出结果

[ 5 10 15 20]
[[ 5 10 15]
[20 25 30]
[35 40 45]]
 
numpy.shape是用来判断类型的,返回的值是元祖类型的多维数组的个数
vector = numpy.array([1, 2, 3, 4])
print(vector.shape)
matrix = numpy.array([[5, 10, 15], [20, 25, 30]])
print(matrix.shape)
(4,)
(2, 3)
python中随便往list里存任何数值,都是在numpy里必须存储的是固定的格式,array是不支持任何格式的转换的
以下数据由于有5.0的数值存在,为了满足这个数值,所有的数值都被转换为浮点数了
import numpy
numbers = numpy.array([1, 2, 3, 4, 0, 5.0])
print(numbers)
numbers.dtype

world_alchol = numpy.genfromtxt(path, delimiter=',', dtype=str, skip_header=1)
print(world_alchol)

文件读取

输出的是一个列表,那么读取的时候就可以根据切片读取出列表的值

uruguay_other_1986 = world_alchol[1, 4]
third_country = world_alchol[2, 2]
print(uruguay_other_1986)
print(third_country)

切片取值

【数据分析学习】016-numpy数据结构的更多相关文章

  1. Python数据分析学习之Numpy

    Numpy的简单操作 import numpy #导入numpy包 file = numpy.genfromtxt("文件路径",delimiter=" ",d ...

  2. Python数据分析学习目录

    python数据分析学习目录 Anaconda的安装和更新 矩阵NumPy pandas数据表 matplotlib-2D绘图库学习目录                      

  3. 个人永久性免费-Excel催化剂功能第100波-透视多行数据为多列数据结构

    在数据处理过程中,大量的非预期格式结构需要作转换,有大家熟知的多维转一维(准确来说应该是交叉表结构的数据转二维表标准数据表结构),也同样有一些需要透视操作的数据源,此篇同样提供更便捷的方法实现此类数据 ...

  4. Python数据分析学习(二):Numpy数组对象基础

    1.1数组对象基础 .caret, .dropup > .btn > .caret { border-top-color: #000 !important; } .label { bord ...

  5. Python数据分析学习(一):Numpy与纯Python计算向量加法速度比较

    import sys from datetime import datetime import numpy as np def numpysum(n): a = np.arange(n) ** 2 b ...

  6. python数据分析学习(2)pandas二维工具DataFrame讲解

    目录 二:pandas数据结构介绍   下面继续讲解pandas的第二个工具DataFrame. 二:pandas数据结构介绍 2.DataFarme   DataFarme表示的是矩阵的数据表,包含 ...

  7. python数据分析学习(1)pandas一维工具Series讲解

    目录 一:pandas数据结构介绍   python是数据分析的主要工具,它包含的数据结构和数据处理工具的设计让python在数据分析领域变得十分快捷.它以NumPy为基础,并对于需要类似 for循环 ...

  8. 数据分析学习(zhuan)

    http://www.zhihu.com/question/22119753 http://www.zhihu.com/question/20757000 ********************** ...

  9. [python]-数据科学库Numpy学习

    一.Numpy简介: Python中用列表(list)保存一组值,可以用来当作数组使用,不过由于列表的元素可以是任何对象,因此列表中所保存的是对象的指针.这样为了保存一个简单的[1,2,3],需要有3 ...

随机推荐

  1. python实现RGB转化为灰度图像

    问题: 我正尝试使用matplotlib读取RGB图像并将其转换为灰度.在matlab中,我使用这个: 1 img = rgb2gray(imread('image.png')); 在matplotl ...

  2. ul,li不能左右居中的问题

    近期帮朋友做一个他们公司的商品站点,用到了曾经学到的html+css技术,当然做站点少不了Javascript和jquery这些..... 这个功能主要实现了导航条里面的条目是居中的.所以声明了ul, ...

  3. HDU 5187

    超简单的公式题(2^n-2).不过,要过可不容易,因为会爆64位,所以,可以使用快速乘法. #include <iostream> #include <cstdio> #inc ...

  4. UVA - 348Optimal Array Multiplication Sequence(递推)

    id=19208">题目:Optimal Array Multiplication Sequence 题目大意:给出N个矩阵相乘.求这些矩阵相乘乘法次数最少的顺序. 解题思路:矩阵相乘 ...

  5. &lt;图形图像,动画,多媒体&gt; 读书笔记 --- 录制与编辑视频

    使用UIImagePickerController 进行录制 #import "ViewController.h" #import <MobileCoreServices/M ...

  6. php抓取网页

    用php抓取页面的内容在实际的开发其中是很实用的,如作一个简单的内容採集器,提取网页中的部分内容等等.抓取到的内容在通过正則表達式做一下过滤就得到了你想要的内容.下面就是几种经常使用的用php抓取网页 ...

  7. 贪吃蛇c++实现

    近期没事翻了一下曾经写的程序.真是不堪入目.曾经真是什么都不懂.只是有一个程序倒是挺有意思的,大二的时候写的一个贪吃蛇游戏.尽管程序非常难看,还有非常多漏洞.但也是这个程序让我真正開始喜欢上了编程.不 ...

  8. 关于SharePoint讨论板的一些知识(2)--视图中的栏目

    关于SharePoint讨论板的一些知识(2)--视图中的栏目         新建讨论后,默认显示四个栏目:主题.创建者.答复和上次更新时间.         从功能区的当前视图能够看出这是默认的主 ...

  9. 利用LruCache载入网络图片实现图片瀑布流效果(改进版)

    PS: 2015年1月20日21:37:27 关于LoadImageAsyncTask和checkAllImageViewVisibility可能有点小bug 改动后的代码请參见升级版本号的代码 ht ...

  10. luogu2437 蜜蜂路线

    题目大意 一只蜜蜂在下图所示的数字蜂房上爬动,已知它只能从标号小的蜂房爬到标号大的相邻蜂房,现在问你:蜜蜂从蜂房M开始爬到蜂房N,M<N,有多少种爬行路线?M,N<=1000 题解 看到M ...