[HNOI2015]亚瑟王(期望+DP)
题解
利用期望的线性性,可以把问题转化为求每一个卡牌造成期望的期望值。
然后我们就需要知道每一个卡牌发动技能的概率。
因为当某一张卡牌发动技能时这一轮会结束,这就很难直接计算了。
我们使用DP
设dp[i][j]为前i张卡牌在r轮中有j张发动技能的概率
i这张牌发动技能的概率就为sigema(j=1,min(r,i-1))f[i-1][j]*(1-(1-p[i])^(m-j))
然后我们考虑如何转移。
当当前卡牌发动技能,dp[i][j]+=dp[i-1][j-1]*(1-(1-p[i])^(m-j+1))
当当前卡牌不发动技能,dp[i][j]+=dp[i-1][j]*(1-p[i])^(m-j)
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;
const int N=;
int t,n,m;
double p[N],d[N],pw[N][N],dp[N][N],g[N],ans;
int main(){
scanf("%d",&t);
while(t--){
memset(dp,,sizeof(dp));
memset(g,,sizeof(g));
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++){
scanf("%lf%lf",&p[i],&d[i]);
pw[i][]=;
}
for(int i=;i<=n;i++)
for(int j=;j<=m;j++){
pw[i][j]=pw[i][j-]*(1.0-p[i]);
}
dp[][]=pw[][m];
dp[][]=g[]=1.0-pw[][m];
for(int i=;i<=n;i++)
for(int j=;j<=min(i,m);j++){
if(j!=)dp[i][j]+=(-pw[i][m-j+])*dp[i-][j-];
if(i!=j)dp[i][j]+=pw[i][m-j]*dp[i-][j];
}
for(int i=;i<=n;i++)
for(int j=;j<=min(i-,m);j++){
g[i]+=dp[i-][j]*(1.0-pw[i][m-j]);
}
ans=;
for(int i=;i<=n;i++){
ans+=g[i]*d[i];
}
printf("%.10lf\n",ans);
}
return ;
}
[HNOI2015]亚瑟王(期望+DP)的更多相关文章
- P3239 [HNOI2015]亚瑟王 期望dp
这个题一看就是期望dp,但是我有个问题,一个事件的期望等于他所有事件可能行乘权值的和吗...为什么我有天考试的时候就不对呢...求大佬解释一下. 至于这道题,f[i][j]代表前i个有j个发动技能,这 ...
- P3239 [HNOI2015]亚瑟王 期望 dp
LINK:亚瑟王 Saber!Excalibur! 比较难的期望dp. 可以发现如果暴力枚举所有的局面复杂度很高 . 转换的思路则是 期望的线性性. 求出每张牌的期望累加即可. 考虑每张牌的期望=这张 ...
- BZOJ4008: [HNOI2015]亚瑟王(期望dp)
Time Limit: 20 Sec Memory Limit: 512 MBSec Special JudgeSubmit: 1952 Solved: 1159[Submit][Status] ...
- 洛谷 P3239 [HNOI2015]亚瑟王(期望dp)
题面 luogu 题解 一道复杂的期望\(dp\) 思路来源:__stdcall 容易想到,只要把每张牌打出的概率算出来就可以求出\(ans\) 设\(fp[i]\)表示把第\(i\)张牌打出来的概率 ...
- BZOJ [HNOI2015]亚瑟王 ——期望DP
发现每张卡牌最后起到作用只和是否打出去了有关. 而且每张牌打出去的概率和之前的牌打出去的情况有关. 所以我们按照牌的顺序进行DP. 然后记录$i$张牌中打出$j$张的概率,然后顺便统计答案. 直接对系 ...
- [HNOI2015]亚瑟王[期望DP]
也许更好的阅读体验 \(\mathcal{Description}\) 给出\(n\)个技能,每个技能按输入顺序有\(p[i]\)的概率释放并造成\(d[i]\)的伤害.每轮游戏从前往后顺序查看每个技 ...
- 【BZOJ4008】[HNOI2015]亚瑟王 期望
[BZOJ4008][HNOI2015]亚瑟王 Description 小 K 不慎被 LL 邪教洗脑了,洗脑程度深到他甚至想要从亚瑟王邪教中脱坑. 他决定,在脱坑之前,最后再来打一盘亚瑟王.既然是最 ...
- 【BZOJ4008】【HNOI2015】亚瑟王 [期望DP]
亚瑟王 Time Limit: 20 Sec Memory Limit: 512 MB[Submit][Status][Discuss] Description 小 K 不慎被 LL 邪教洗脑了,洗 ...
- P3239 [HNOI2015]亚瑟王——概率DP
题面:亚瑟王 最近考试考期望很自闭啊,没做过这种类型的题,只能现在练一练: 所谓期望,就是状态乘上自己的概率:对于这道题来说,我们要求的是每张牌的伤害乘上打出的概率的和: 当然不是直接乘,因为给的是每 ...
随机推荐
- Unity Android发布“Bundle Identifier has not been set up correctly”
原文:http://answers.unity3d.com/questions/162141/android-bundle-identifier-has-not-been-setup.html
- 再生龙恢复分区后修复引导或debian linux修复引导 三部曲
先参考 sudo -imkdir /mntmount /dev/sda1 /mntgrub-install --force --no-floppy --root-directory=/mnt /dev ...
- Hihocoder1350-Binary Watch
时间限制:10000ms单点时限:1000ms内存限制:256MB 描述 Consider a binary watch with 5 binary digits to display hours ( ...
- 20 个让你效率更高的 CSS 代码技巧
在这里想与你分享一个由各大CSS网站总结推荐的20个有用的规则和实践经验集合.有一些是面向CSS初学者的,有一些知识点是进阶型的.希望每个人通过这篇文章都能学到对自己有用的知识. 1.注意外边距折叠 ...
- Pyhton学习——Day26
#多态:多态指的是一类事物有多种形态# import abc# class Animal(metaclass = abc.ABCMeta):# 同一类事物:动物# @abc.abstractclass ...
- Python数据分析------例子1(信用卡欺诈)
1.读取数据 data=read_csv(path) data.head() #画图(查看class即分类的数据条形图),函数sort_index()是将dataframe按照行索引来排序输出值 co ...
- iOS开发——自动填充短信验证码
苹果在iOS 12,改进了一个很人性化的小细节.在做短信验证码功能的时候,自动获取短信中的验证码,然后点击填充即可.不用再向之前那样麻烦,自己看到弹出的短信信息后,死记硬背,再一个个敲上去,害怕背错了 ...
- PHP下的异步尝试二:初识协程
PHP下的异步尝试系列 如果你还不太了解PHP下的生成器,你可以根据下面目录翻阅 PHP下的异步尝试一:初识生成器 PHP下的异步尝试二:初识协程 PHP下的异步尝试三:协程的PHP版thunkify ...
- POJ 3696
这里面的一个转换的小技巧很重要,把888...8转换成(10^x-1)/9*8.神来之笔,佩服. 这样有(10^x-1)/9*8=L*p得10^x-1=L*p*9/8,设m=9*L/gcd(L,8). ...
- Intellij idea 自动完成的变量名称首字母变为小写
Intellij idea 自动完成的变量名称首字母变为小写 好像没有什么好的自动办法,自己输入一个小写的字母吧,然后Idea会出提示.