BZOJ 1444 [JSOI2009]有趣的游戏 (Trie图/AC自动机+矩阵求逆)
题目大意:给你$N$个长度相等且互不相同的模式串,现在有一个字符串生成器会不断生成字符,其中每个字符出现的概率是$p_{i}/q_{i}$,当生成器生成的字符串包含了某个模式串,则拥有该模式串的玩家胜利,然后游戏立即结束,求每个玩家获胜的概率 $N<=10$
首先建出$Trie$图
接着设$f[i]$表示匹配时停在i的概率,可得$f[ch{k}]+=f[i]*p_{k}/q_{k}$
由于$N$很小,可以构建$dp$转移的邻接矩阵,由于生成器生成的串是无限长的,相当于把矩阵乘了无限次幂
可以耍赖一点...把矩阵自乘很多次,反正是保留小数卡精度过
正确的做法呢,就是利用等比数列求极限的方法,即$1/(1-p)$,1在这里是单位矩阵,$p$是邻接矩阵
然后对$(1-p)$这个矩阵求逆即可
#include <cmath>
#include <queue>
#include <vector>
#include <cstdio>
#include <cstring>
#include <algorithm>
#define NN 105
#define maxn 100000
#define ll long long
#define dd double
#define uint unsigned int
#define mod 1000000007
#define idx(X) (X-'A')
#define eps (1e-9)
using namespace std; int n,m;
int ed[NN];
int p[],q[],L,num; struct M{
dd f[NN][NN*];
friend M operator * (const M &a,const M &b){
M ret;memset(&ret,,sizeof(ret));
for(int i=;i<n;i++)
for(int j=;j<n;j++)
for(int k=;k<n;k++)
ret.f[i][j]+=a.f[i][k]*b.f[k][j];
return ret;
}
int Gauss()
{
int nn=n*;
for(int i=;i<n;i++)
f[i][i+n]=;
for(int i=;i<n;i++)
{
for(int j=i;j<n;j++)
if(fabs(f[j][i])>eps){
for(int k=;k<nn;k++)
swap(f[i][k],f[j][k]);
break;
}
if(fabs(f[i][i])<eps) return ;
dd r=1.0/f[i][i];
for(int j=i;j<nn;j++)
f[i][j]*=r;
for(int j=;j<n;j++)
if(j!=i){
r=f[j][i];
for(int k=i;k<nn;k++)
f[j][k]=f[j][k]-r*f[i][k];
}
}
for(int i=;i<n;i++)
for(int j=;j<n;j++)
f[i][j]=f[i][j+n];
return ;
}
}; struct AC{
int ch[NN][],fail[NN],tot,win[NN];
void Build_Trie(char *str,int len,int id)
{
int x=;
for(int i=;i<=len;i++){
if(!ch[x][idx(str[i])])
ch[x][idx(str[i])]=++tot;
x=ch[x][idx(str[i])];
}ed[id]=x;win[x]=;
}
void Build_Fail()
{
queue<int>q;
for(int i=;i<m;i++)
if(ch[][i]) q.push(ch[][i]);
while(!q.empty())
{
int x=q.front();q.pop();
for(int i=;i<m;i++)
{
if(ch[x][i]){
fail[ch[x][i]]=ch[fail[x]][i];
q.push(ch[x][i]);
}else{
ch[x][i]=ch[fail[x]][i];
}
}
}
}
void Build_Martix(M &S)
{
for(int x=;x<=tot;x++)
if(!win[x]){
for(int i=;i<m;i++)
S.f[ch[x][i]][x]+=1.0*p[i]/q[i];
}
for(int i=;i<n;i++)
for(int j=;j<n;j++)
if(i!=j) S.f[i][j]=-S.f[i][j];
else S.f[i][j]=1.0-S.f[i][j];
}
}ac;
M ans,ni; int main()
{
//freopen("t1.in","r",stdin);
scanf("%d%d%d",&num,&L,&m);
for(int i=;i<m;i++)
scanf("%d%d",&p[i],&q[i]);
char str[];
for(int i=;i<=num;i++){
scanf("%s",str+);
ac.Build_Trie(str,L,i);}
ac.Build_Fail();
n=ac.tot+;
ac.Build_Martix(ans);
ans.Gauss();
for(int i=;i<=num;i++)
printf("%.2lf\n",ans.f[ed[i]][]);
return ;
}
BZOJ 1444 [JSOI2009]有趣的游戏 (Trie图/AC自动机+矩阵求逆)的更多相关文章
- BZOJ 1444:[JSOI2009]有趣的游戏
BZOJ 1444:[JSOI2009]有趣的游戏 题目链接 首先我们建出Trie图,然后高斯消元. 我们设\(f_i\)表示经过第\(i\)个点的期望次数: \[ f_x=\sum i\cdot p ...
- BZOJ 1444: [Jsoi2009]有趣的游戏 [AC自动机 高斯消元]
1444: [Jsoi2009]有趣的游戏 题意:每种字母出现概率\(p_i\),有一些长度len的字符串,求他们出现的概率 套路DP的话,\(f[i][j]\) i个字符走到节点j的概率,建出转移矩 ...
- BZOJ:4820: [Sdoi2017]硬币游戏&&BZOJ:1444: [Jsoi2009]有趣的游戏(高斯消元求概率)
1444: [Jsoi2009]有趣的游戏 4820: [Sdoi2017]硬币游戏 这两道题都是关于不断随机生成字符后求出现给定字符串的概率的问题. 第一题数据范围较小,将串建成AC自动机以后,以A ...
- BZOJ 1444 [Jsoi2009]有趣的游戏 (AC自动机 + 概率DP + Gauss)
1444: [Jsoi2009]有趣的游戏 Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 1382 Solved: 498[Submit][Statu ...
- ●BZOJ 1444 [Jsoi2009]有趣的游戏
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=1444题解.1: 概率dp,矩阵乘法,快速幂. 对所有串建立AC自动机, 那么如果在trie树 ...
- bzoj 1444: [Jsoi2009]有趣的游戏【AC自动机+dp+高斯消元】
https://blog.sengxian.com/solutions/bzoj-1444 orz 一直是我想错了,建出AC自动机之后,实际上这个定义是设f[i]为经过i节点的 * 期望次数 * ,因 ...
- BZOJ 1444 [JSOI2009]有趣的游戏 (AC自动机、概率与期望DP、矩阵乘法)
诶这题洛谷居然没有??? 题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=1444 题解: 我见到主要有三种做法. 一是矩阵乘法.设\(d ...
- BZOJ 1444: [Jsoi2009]有趣的游戏 AC自动机+概率与期望+矩阵乘法
这道题还比较友好~首先,构建出来 $AC$ 自动机,那么我们要求的就是从 $0$ 号点走无限次走到一个终止节点的概率. 考虑构建转移矩阵 $M,$ $M_{i,j}$ 表示节点 $i$ 转移到节点 $ ...
- 1444: [Jsoi2009]有趣的游戏
1444: [Jsoi2009]有趣的游戏 链接 分析: 如果一个点回到0号点,那么会使0号点的概率增加,而0号点的概率本来是1,不能增加,所以这题用期望做. 设$x_i$表示经过i的期望次数,然后初 ...
随机推荐
- ZBrush中如何反选遮罩
通过对ZBrush的学习,我们知道了如何手动创建遮罩,手动创建遮罩相对来说是最简单有效的方法,在某些特定的使用场合会起到事半功倍的效果.创建遮罩我们可以结合Ctrl键在物体保持编辑的状态下来执行,您可 ...
- 关于背景颜色、TEXT、<b>、<i>、<u>、<br>、< >、<br>、<br>、h1-h6、<span>、<div>、<ol>、<ul>、<a>标签的用法(下载、跳转、锚点)、Img插入的用法
<html> <head> <meta charset="UTF-8"> <title></ ...
- day21 模块
目录 模块 import 与 from...import 循环导入问题 解决方案一 解决方案二 Python文件的两种用途 从普通的面条型代码,到函数型代码,其实是在做什么? 封装代码,一个函数差不多 ...
- 8、Situation-Dependent Combination of Long-Term and Session-Based Preferences in Group Recommendations: An Experimental Analysis ----组推荐中基于长期和会话偏好的情景依赖组合
一.摘要: 背景:会话组推荐系统的一个主要挑战是如何适当地利用群组成员之间的交互引起用户偏好,这可能会偏离用户的长期偏好.长期偏好和群组诱导的偏好之间的相对重要性应该根据具体的群组设置而变化. 本文: ...
- 用 Java 技术创建 RESTful Web (服务 JAX-RS:一种更为简单、可移植性更好的替代方式)
作者: Dustin Amrhein, 软件工程师, IBM Nick Gallardo, 软件工程师, IBM 出处: http://www.ibm.com/developerworks/cn/we ...
- These relative modules were not found:...{"sourceM ap":false} 报错解决
今天在使用vue2.0 + webpack 时,没有动过任何配置文件,也没更新依赖,但是报下面的错误: These relative modules were not found: * ./star1 ...
- php 中引入邮箱服务 , 利用第三方的smtp邮件服务
项目中用短信通知有时间限制,对一些频率比较大的信息力不从心. 使用邮箱发送信息是个不错的选择\(^o^)/! 首先要注册一个邮箱,在邮箱设置里开通smtp功能. 简单介绍下smtp,大概就是第三方客户 ...
- WinServer-IIS-IP及域的限制
如果启用域名限制,那么会对服务器产生比较大的资源开销,慎重选择这个 来自为知笔记(Wiz)
- HDU 4333 Contest 4
一开始就想到了扩展KMP,因为只有扩展KMP才是处理后缀的.但忽然短路以为扩展KMP求的是最长公共后缀,囧....又浪费了很多时间,都是对这个算法练得不多 再看那个扩展KMP算法之后,就很确定要的就是 ...
- C++中对字符串进行插入、替换、删除操作
#include <iostream> #include <string> using std::cout; using std::endl; using std::strin ...