P1064 金明的预算方案 (依赖性背包问题)
这道题可以用分组背包来做。
但是分组有两种方式
一种是把主件,主件+附件1,主件+附件2分成一组
组内只能选一个物品
一种是建一颗树,用树形dp的方式去做
第二种更通用,就算物品的依赖关系是森林都可以做
而第一种只限于这道题,因为只有一层关系,所以有特殊解
目前只写了第一种,后面补第二种
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
#define REP(i, a, b) for(int i = (a); i < (b); i++)
using namespace std;
const int MAXN = 412;
const int MAXM = 32123;
int f[MAXM], p[MAXN], w[MAXN], fa[MAXN], n, m;
int W[MAXN], P[MAXN], k[MAXN], cnt, N;
void add(int w, int p)
{
W[N] = w; P[N] = p; k[N++] = cnt;
}
void init()
{
REP(i, 1, n + 1)
if(fa[i] == 0)
{
add(w[i], p[i]);
vector<int> son;
REP(j, 1, n + 1)
if(fa[j] == i)
son.push_back(j);
if(son.size() >= 1) add(w[i] + w[son[0]], p[i] + p[son[0]]);
if(son.size() >= 2)
{
add(w[i] + w[son[1]], p[i] + p[son[1]]);
add(w[i] + w[son[1]] + w[son[0]], p[i] + p[son[1]] + p[son[0]]);
}
cnt++;
}
}
int main()
{
scanf("%d%d", &m, &n);
REP(i, 1, n + 1)
{
scanf("%d%d%d", &w[i], &p[i], &fa[i]);
p[i] *= w[i];
}
init();
REP(r, 0, cnt)
for(int j = m; j >= 0; j--)
REP(i, 0, N)
if(k[i] == r && j - W[i] >= 0)
f[j] = max(f[j], f[j - W[i]] + P[i]);
printf("%d\n", f[m]);
return 0;
}
第二种
大家有没有看到这个代码和选课的树形dp的区别。(选课https://blog.csdn.net/qq_34416123/article/details/82258060)
这道题是选课的简化版,最多只有两个儿子,而且只有三层。
这份代码多了个递归参数体积。选课那题体积都为1,而cnt数组记录的是以i结尾的子树
的节点的个数,也就是体积。
#include<cstdio>
#include<algorithm>
#include<vector>
#define REP(i, a, b) for(int i = (a); i < (b); i++)
#define FOR(i, a, b) for(int i = (a); i <= (b); i++)
using namespace std;
const int MAXN = 112;
const int MAXM = 32123;
int f[MAXN][MAXM], p[MAXN], w[MAXN], n, m;
vector<int> g[MAXN];
void dfs(int u, int k)
{
REP(i, 0, g[u].size())
{
int v = g[u][i];
FOR(j, 0, k - w[v]) f[v][j] = f[u][j];
if(k >= w[v]) dfs(v, k - w[v]);
FOR(j, w[v], k) f[u][j] = max(f[u][j], f[v][j-w[v]] + w[v] * p[v]);
}
}
int main()
{
scanf("%d%d", &m, &n);
FOR(i, 1, n)
{
int fa;
scanf("%d%d%d", &w[i], &p[i], &fa);
g[fa].push_back(i);
}
dfs(0, m);
printf("%d\n", f[0][m]);
return 0;
}
P1064 金明的预算方案 (依赖性背包问题)的更多相关文章
- 洛谷 P1064 金明的预算方案(01背包问题)
传送门:Problem 1064 https://www.cnblogs.com/violet-acmer/p/9852294.html 题解: 这道题是 “01”背包问题的变形. 如果不考虑买附件必 ...
- 有依赖的背包---P1064 金明的预算方案
P1064 金明的预算方案 solution 1 暴搜 70pt dfs (当前搜到了第几个物品,产生的总价值,剩下多少钱) 剪枝 1:如果剩下的钱数<0,直接return就好,没必要继续了 剪 ...
- 【dp】P1064 金明的预算方案
题目描述 金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间金明自己专用的很宽敞的房间.更让他高兴的是,妈妈昨天对他说:“你的房间需要购买哪些物品,怎么布置,你说了算,只要不超过NN元钱就行”. ...
- 洛谷 P1064 金明的预算方案(有依赖的背包问题)
题目描述 金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间金明自己专用的很宽敞的房间.更让他高兴的是,妈妈昨天对他说:“你的房间需要购买哪些物品,怎么布置,你说了算,只要不超过N元钱就行”.今 ...
- 洛谷 P1064 金明的预算方案【有依赖的分组背包】
题目描述 金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间金明自己专用的很宽敞的房间.更让他高兴的是,妈妈昨天对他说:"你的房间需要购买哪些物品,怎么布置,你说了算,只要不超过N元钱 ...
- P1064 金明的预算方案 (分组背包稍稍变形)
题目描述 金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间金明自己专用的很宽敞的房间.更让他高兴的是,妈妈昨天对他说:“你的房间需要购买哪些物品,怎么布置,你说了算,只要不超过NN元钱就行”. ...
- 洛谷P1064 金明的预算方案
题目描述 金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间金明自己专用的很宽敞的房间.更让他高兴的是,妈妈昨天对他说:“你的房间需要购买哪些物品,怎么布置,你说了算,只要不超过NN元钱就行”. ...
- luogu P1064 金明的预算方案
题目描述 金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间金明自己专用的很宽敞的房间.更让他高兴的是,妈妈昨天对他说:“你的房间需要购买哪些物品,怎么布置,你说了算,只要不超过N元钱就行”.今 ...
- 洛谷 P1064 金明的预算方案
题目描述 金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间金明自己专用的很宽敞的房间.更让他高兴的是,妈妈昨天对他说:“你的房间需要购买哪些物品,怎么布置,你说了算,只要不超过N元钱就行”.今 ...
- 洛谷 P1064 金明的预算方案 (有依赖的0/1背包)
题目描述 金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间金明自己专用的很宽敞的房间.更让他高兴的是,妈妈昨天对他说:“你的房间需要购买哪些物品,怎么布置,你说了算,只要不超过NN元钱就行”. ...
随机推荐
- [读书笔记] R语言实战 (六) 基本图形方法
1. 条形图 barplot() #载入vcd包 library(vcd) #table函数提取各个维度计数 counts <- table(Arthritis$Improved) count ...
- 炫酷 CSS 背景效果的 10 个代码片段
在现代网页设计中,大背景图设计非常流行.随着高清(现在是4K)显示器的出现,越来越多的网页设计师使用大背景图来填充屏幕. 因为这样可以造成很大的视觉冲击力,并有助于更好的传递所要表现的内容. 但是,如 ...
- oracle 数据类型及函数
第一节:字符串类型及函数 字符类型分 3 种,char(n) .varchar(n).varchar2(n) : char(n)固定长度字符串,假如长度不足 n,右边空格补齐: varchar(n)可 ...
- [Hyperapp] Interact with the State Object through Hyperapp Action functions
Hyperapp is an ultra lightweight (1kb), minimal, functional, JavaScript library for building UIs. It ...
- c#将List<T>转换成DataSet
/// <summary> /// List<T> 转换成DataSet /// </summary> /// &l ...
- Codeforces 10A-Power Consumption Calculation(模拟)
A. Power Consumption Calculation time limit per test 1 second memory limit per test 256 megabytes in ...
- 如何获取Assets的路径
有两种方法可以获取assets的绝对路径: 第一种方法: String path = file:///android_asset/文件名; 第二种方法: InputStream abpath = ge ...
- CoreData 从入门到精通(二) 数据的增删改查
在上篇博客中,讲了数据模型和 CoreData 栈的创建,那下一步就是对数据的操作了.和数据库一样,CoreData 里的操作也无非是增删改查.下面我们将逐步讲解在 CoreData 中进行增删改查的 ...
- [NOIP2017] 逛公园 解题报告(DP)
我很不想说 在我的AC代码上我打了表,但实在没有办法了.莫名的8,9个点RE.然而即便是打表...也花了我很久. 这大概是NOIP2017最难的题了,为了让不懂的人更容易理解,这篇题解会比较详细 我的 ...
- JavaScript中Number常用属性和方法
title: JavaScript中Number常用属性和方法 toc: false date: 2018-10-13 12:31:42 Number.MAX_VALUE--1.79769313486 ...