TF-IDF模型

1. 理论基础

  由于数据挖掘所有数据都要以数字形式存在,而文本是以字符串形式存在。所以进行文本挖掘时需要先对字符串进行数字化,从而能够进行计算。TF-IDF就是这样一种技术,能够将字符串转换为数字,从而能够进行数据计算。

  TF-IDF(term frequency–inverse document frequency)是一种用于资讯检索与资讯探勘的常用加权技术。TF-IDF是一种统计方法,用以评估一字词对于一个文件集一份文件对于所在的一个语料库中的重要程度。字词的重要性随着它在文件中出现的次数成正比增加,但同时会随着它在语料库中出现的频率成反比下降。

  TF意思是词频(Term Frequency),IDF意思是逆向文件频率(Inverse Document Frequency)。

1.1 简介

  FIDF的主要思想是:如果某个词或短语在一篇文章中出现的频率TF高,并且在其他文章中很少出现,即IDF低,则认为此词或者短语具有很好的类别区分能力,适合用来分类

  可以将一个词对的TF-IDF值表示为公式-1,该值明确定义了对于分类的重要性,值越大,说明越有益于分类;值越小,说明越无益于分类。

1.2 TF(词频)

  在一份给定的文件里,词频(term frequency,TF)指的是某一个给定的词语在该文件中出现的频率。这个数字是对词数(term count)的归一化,以防止它偏向长的文件。(同一个词语在长文件里可能会比短文件有更高的词数,而不管该词语重要与否。)对于在某一特定文件里的词语ti来说,它的重要性可表示为:

 以上式子中ni,j是该词在文件dj中的出现次数,而分母则是在文件dj中所有字词的出现次数之和。

1.3 IDF(逆向文件频率)

  逆向文件频率 (inverse document frequency, IDF) 是一个词语普遍重要性的度量。某一特定词语的IDF,可以由总文件数目除以包含该词语之文件的数目,再将得到的商取对数得到。

其中:

  • |D|:语料库中的文件总数;
  • |{j:ti∈dj}|:包含词语ti的文件数目,如果该词语不在语料库中,就会导致被除数为零,因此一般情况下使用1+|{j:ti∈dj}|

所以公式-1可以表示为: 

某一特定文件内的高词语频率,以及该词语在整个文件集合中的低文件频率,可以产生出高权重的TF-IDF。因此,TF-IDF倾向于过滤掉常见的词语,保留重要的词语。

1.4示例

  TFIDF实际上是:TF * IDF,TF词频(Term Frequency),IDF逆向文件频率(Inverse Document Frequency)。TF表示词条在文档d中出现的频率。IDF的主要思想是:如果包含词条t的文档越少,也就是n越小,IDF越大,则说明词条t具有很好的类别区分能力。

如果某一类文档C中包含词条t的文档数为m,而其它类包含t的文档总数为k,显然所有包含t的文档数n=m+k,当m大的时候,n也大,按照IDF公式得到的IDF的值会小,就说明该词条t类别区分能力不强。但是实际上,如果一个词条在一个类的文档中频繁出现,则说明该词条能够很好代表这个类的文本的特征,这样的词条应该给它们赋予较高的权重,并选来作为该类文本的特征词以区别与其它类文档。

  示例1

  有很多不同的数学公式可以用来计算TF-IDF。这边的例子以上述的数学公式来计算。词频 (TF) 是一词语出现的次数除以该文件的总词语数。假如一篇文件的总词语数是100个,而词语"母牛"出现了3次,那么"母牛"一词在该文件中的词频就是3/100=0.03。一个计算文件频率 (DF) 的方法是测定有多少份文件出现过"母牛"一词,然后除以文件集里包含的文件总数。所以,如果"母牛"一词在1,000份文件出现过,而文件总数是10,000,000份的话,其逆向文件频率就是 log(10,000,000 / 1,000)=4。最后的TF-IDF的分数为0.03 * 4=0.12。

  示例2

   根据关键字k1,k2,k3进行搜索结果的相关性就变成TF1*IDF1 + TF2*IDF2 + TF3*IDF3。比如document1的term总量为1000,k1,k2,k3在document1出现的次数是100,200,50。包含了 k1, k2, k3的docuement总量分别是 1000, 10000,5000。document set的总量为10000。 TF1 = 100/1000 = 0.1 TF2 = 200/1000 = 0.2 TF3 = 50/1000 = 0.05 IDF1 = log(10000/1000) = log(10) = 2.3 IDF2 = log(10000/100000) = log(1) = 0; IDF3 = log(10000/5000) = log(2) = 0.69 这样关键字k1,k2,k3与docuement1的相关性= 0.1*2.3 + 0.2*0 + 0.05*0.69 = 0.2645 其中k1比k3的比重在document1要大,k2的比重是0.

2. Spark应用

  Spark有两个机器学习的算法库:mlLib和ml,这两个库的最大区别是依赖的容器不同。mlLib将数据存储在DataFrame中,而ml是将数据存储在RDD中。其中mlLib较新,所以本文只对mlLib的TF-IDF进行介绍。其中对于Spark mlLib框架和使用方式不熟悉可以参考另外一篇文章。

2.1 依赖组件

  1) TF操作

  TF操作依赖两个类:HashingTF和CountVectorizer,它们都可以用来生成频率向量。其中HashingTF是一个Transformer子类,它接受一组数据,并将这些数据转换为固定长度的特征向量。CountVectorizer将文本文档转换为术语计数的向量。更多的细节请参考CountVectorizer

  2) IDF操作

  IDF是一个Estimator子类,其会训练数据集并生成一个IDFModel对象。IDFModel采用特征向量(通常是从HashingTF或CountVectorizer创建的),并缩放每一列。直观地说,它降低了在语料库中频繁出现的列。

2.2 示例

  如下示例通过Tokenizer类,将一组句子分离为一个个单词。对于每一个句子(单词袋),我们使用HashingTF把这个句子变成一个特征向量。我们使用IDF来重新缩放特征向量;当使用文本作为特性时,这通常会提高性能。我们的特征向量可以被传递给一个学习算法。

  1. import org.apache.spark.ml.feature.{HashingTF, IDF, Tokenizer}
  2. val sentenceData = spark.createDataFrame(Seq(
  3.   (0.0, "Hi I heard about Spark"),
  4.   (0.0, "I wish Java could use case classes"),
  5.   (1.0, "Logistic regression models are neat")
  6. )).toDF("label", "sentence")
  7.  
  8. val tokenizer = new Tokenizer().setInputCol("sentence").setOutputCol("words")
  9. val wordsData = tokenizer.transform(sentenceData)
  10.  
  11. val hashingTF = new HashingTF()
  12.   .setInputCol("words").setOutputCol("rawFeatures").setNumFeatures(20)
  13.  
  14. val featurizedData = hashingTF.transform(wordsData)
  15. // alternatively, CountVectorizer can also be used to get term frequency vectors
  16.  
  17. val idf = new IDF().setInputCol("rawFeatures").setOutputCol("features")
  18. val idfModel = idf.fit(featurizedData)
  19.  
  20. val rescaledData = idfModel.transform(featurizedData)
  21. rescaledData.select("label", "features").show()

3. Scikit-learn应用

3.1 依赖组件

  1) 安装scikit-learn包
    1. sudo pip install scikit-learn
  2) 中文分词采用的jieba分词,安装jieba分词包
    1. sudo pip install jieba

3.2 Jieba使用

  关于jieba分词的使用非常简单,参考这里,关键的语句就是(这里简单试水,不追求效果 )

  1. import jieba.posseg as pseg
  2. words=pseg.cut("对这句话进行分词")
  3. for key in words:
  4.      print key.word,key.flag

输出:

对 p

这 r

句 q

话 n

进行 v

分词 n

3.3 示例

  采用scikit-learn包进行tf-idf分词权重计算关键用到了两个类:CountVectorizer和TfidfTransformer,具体参见这里.

一个简单的代码如下:

  1. # coding:utf-8
  2. __author__ = "liuxuejiang"
  3. import jieba
  4. import jieba.posseg as pseg
  5. import os
  6. import sys
  7. from sklearn import feature_extraction
  8. from sklearn.feature_extraction.text import TfidfTransformer
  9. from sklearn.feature_extraction.text import CountVectorizer
  10.  
  11. if __name__ == "__main__":
  12.     corpus=["我 来到 北京 清华大学",#第一类文本切词后的结果,词之间以空格隔开
  13.       "他 来到 了 网易 杭研 大厦",#第二类文本的切词结果
  14.       "小明 硕士 毕业 与 中国 科学院",#第三类文本的切词结果
  15.       "我 爱 北京 天安门"]#第四类文本的切词结果
  16.     vectorizer=CountVectorizer()#该类会将文本中的词语转换为词频矩阵,矩阵元素a[i][j] 表示j词在i类文本下的词频
  17.     transformer=TfidfTransformer()#该类会统计每个词语的tf-idf权值
  18.     tfidf=transformer.fit_transform(vectorizer.fit_transform(corpus))#第一个fit_transform是计算tf-idf,第二个fit_transform是将文本转为词频矩阵
  19.     word=vectorizer.get_feature_names()#获取词袋模型中的所有词语
  20.     weight=tfidf.toarray()#将tf-idf矩阵抽取出来,元素a[i][j]表示j词在i类文本中的tf-idf权重
  21.     for i in range(len(weight)):#打印每类文本的tf-idf词语权重,第一个for遍历所有文本,第二个for便利某一类文本下的词语权重
  22.         print u"-------这里输出第",i,u"类文本的词语tf-idf权重------"
  23.         for j in range(len(word)):
  24.             print word[j],weight[i][j]

程序输出:每行格式为:词语 tf-idf权重

-------这里输出第 0 类文本的词语tf-idf权重------ #该类对应的原文本是:"我来到北京清华大学"

中国 0.0

北京 0.52640543361

大厦 0.0

天安门 0.0

小明 0.0

来到 0.52640543361

杭研 0.0

毕业 0.0

清华大学 0.66767854461

硕士 0.0

科学院 0.0

网易 0.0

-------这里输出第 1 类文本的词语tf-idf权重------ #该类对应的原文本是: "他来到了网易杭研大厦"

中国 0.0

北京 0.0

大厦 0.525472749264

天安门 0.0

小明 0.0

来到 0.414288751166

杭研 0.525472749264

毕业 0.0

清华大学 0.0

硕士 0.0

科学院 0.0

网易 0.525472749264

-------这里输出第 2 类文本的词语tf-idf权重------ #该类对应的原文本是: "小明硕士毕业于中国科学院"

中国 0.4472135955

北京 0.0

大厦 0.0

天安门 0.0

小明 0.4472135955

来到 0.0

杭研 0.0

毕业 0.4472135955

清华大学 0.0

硕士 0.4472135955

科学院 0.4472135955

网易 0.0

-------这里输出第 3 类文本的词语tf-idf权重------ #该类对应的原文本是: "我爱北京天安门"

中国 0.0

北京 0.61913029649

大厦 0.0

天安门 0.78528827571

小明 0.0

来到 0.0

杭研 0.0

毕业 0.0

清华大学 0.0

硕士 0.0

科学院 0.0

网易 0.0

4. 参考文献

[1].tf-idf.

[2].TF-IDF原理及使用.

[3].python scikit-learn计算tf-idf词语权重.

[4].Python TF-IDF计算100份文档关键词权重.

[5].Spark mllib官网.

TF-IDF模型的更多相关文章

  1. 25.TF&IDF算法以及向量空间模型算法

    主要知识点: boolean model IF/IDF vector space model     一.boolean model     在es做各种搜索进行打分排序时,会先用boolean mo ...

  2. 文本分类学习(三) 特征权重(TF/IDF)和特征提取

    上一篇中,主要说的就是词袋模型.回顾一下,在进行文本分类之前,我们需要把待分类文本先用词袋模型进行文本表示.首先是将训练集中的所有单词经过去停用词之后组合成一个词袋,或者叫做字典,实际上一个维度很大的 ...

  3. TF/IDF(term frequency/inverse document frequency)

    TF/IDF(term frequency/inverse document frequency) 的概念被公认为信息检索中最重要的发明. 一. TF/IDF描述单个term与特定document的相 ...

  4. 基于TF/IDF的聚类算法原理

        一.TF/IDF描述单个term与特定document的相关性TF(Term Frequency): 表示一个term与某个document的相关性. 公式为这个term在document中出 ...

  5. 使用solr的函数查询,并获取tf*idf值

    1. 使用函数df(field,keyword) 和idf(field,keyword). http://118.85.207.11:11100/solr/mobile/select?q={!func ...

  6. TF/IDF计算方法

    FROM:http://blog.csdn.net/pennyliang/article/details/1231028 我们已经谈过了如何自动下载网页.如何建立索引.如何衡量网页的质量(Page R ...

  7. tf–idf算法解释及其python代码实现(下)

    tf–idf算法python代码实现 这是我写的一个tf-idf的简单实现的代码,我们知道tfidf=tf*idf,所以可以分别计算tf和idf值在相乘,首先我们创建一个简单的语料库,作为例子,只有四 ...

  8. tf–idf算法解释及其python代码实现(上)

    tf–idf算法解释 tf–idf, 是term frequency–inverse document frequency的缩写,它通常用来衡量一个词对在一个语料库中对它所在的文档有多重要,常用在信息 ...

  9. 信息检索中的TF/IDF概念与算法的解释

    https://blog.csdn.net/class_brick/article/details/79135909 概念 TF-IDF(term frequency–inverse document ...

  10. TF的模型文件

    TF的模型文件 标签(空格分隔): TensorFlow Saver tensorflow模型保存函数为: tf.train.Saver() 当然,除了上面最简单的保存方式,也可以指定保存的步数,多长 ...

随机推荐

  1. 漫话C++之string字符串类的使用(有汇编分析)

    C++中并不提倡继续使用C风格的字符串,而是为字符串定义了专门的类,名为string. 使用前的准备工作 在使用string类型时,需要包含string头文件,且string位于std命名空间内: # ...

  2. Dcloud课程8 开心一刻应用如何实现

    Dcloud课程8 开心一刻应用如何实现 一.总结 一句话总结:app就是远程调用接口获得数据,我们在后台要做的,就是写一个个让页面获得接口的数据.这里用的是公共笑话接口. 1.ajax返回给页面的h ...

  3. golang 部分理解:关于channel 和 goroutine 例子

    部分理解:关于channel 和 goroutine 例子package main import "strconv" import "fmt" func mai ...

  4. 创建VG

    创建VG smit mkvg Add a Volume Group Add a Scalable Volume Group   VOLUME GROUP name                    ...

  5. js-YDUI 移动端解决方案

    /** * YDUI 可伸缩布局方案 * rem计算方式:设计图尺寸px / 100 = 实际rem 例: 100px = 1rem */ !function (window) { /* 设计图文档宽 ...

  6. Node中的JavaScript和浏览器中的JavaScript的区别

    浏览器中的JavaScript: 1.基于ECMAscript规范,这个规范规定了语法 2.添加了dom:用来处理文档 document object model 3.添加了BOM:用于操作浏览器 w ...

  7. Loadrunner经典测试实例

    Loadrunner经典测试实例

  8. Shiro学习总结(3)——Apache Shiro身份认证

    身份验证,即在应用中谁能证明他就是他本人.一般提供如他们的身份ID一些标识信息来表明他就是他本人,如提供身份证,用户名/密码来证明. 在shiro中,用户需要提供principals (身份)和cre ...

  9. 重排序列 & 拓扑排序

    http://bookshadow.com/weblog/2016/10/30/leetcode-sequence-reconstruction/ 这道题目,检查重排的序列是否一致. 用了拓扑排序. ...

  10. 利用ServiceWorker实现页面的快速加载和离线访问

    Service workers 本质上充当Web应用程序与浏览器之间的代理服务器,也可以在网络可用时作为浏览器和网络间的代理.它们旨在(除其他之外)使得能够创建有效的离线体验,拦截网络请求并基于网络是 ...