原文地址:http://www.blogjava.net/pengpenglin/archive/2010/02/22/313669.html

【GBK转UTF-8】


在很多论坛、网上经常有网友问“ 为什么我使用 new String(tmp.getBytes("ISO-8859-1"), "UTF-8") 或者 new String(tmp.getBytes("ISO-8859-1"), "GBK")可以得到正确的中文,但是使用 new String(tmp.getBytes("GBK"), "UTF-8") 却不能将GBK转换成UTF-8呢?”

参考前面的【Java基础专题】编码与乱码(03)----String的toCharArray()方法测试一文,我们就知道原因了。因为如果客户端使用GBK、UTF-8编码,编码后的字节经过ISO-8859-1传输,再用原来相同的编码方式进行解码,这个过程是“无损的转换”---- 因为原始和最终的编码方式相同。

但是如果客户端使用GBK编码,到了服务器端要转换成UTF-8,或者相反的过程。想一想,字节还是那些字节,但是编码的规则变了。原来GBK编码后的4个字节要用UTF-8的每个字符3个字节的规则编码,怎么能不乱码呢?

所以从现在开始,不要再犯这种错误了。new String(tmp.getBytes("GBK"), "UTF-8") 这个过程,JVM内部是不会帮你自动对字节进行扩展以适应UTF-8的编码的。正确的方法应该是根据UTF-8的编码规则进行字节的扩充,即手动从2个字节变成3个字节,然后再转换成十六进制的UTF-8编码。

在这个专题的第一篇文章【Java基础专题】编码与乱码(01)---编码基础开头,我们就已经介绍了这个规则:
 ①得到每个字符的2进制GBK编码
 ②将该16进制的GBK编码转换成2进制的字符串(2个字节)
 ③分别在字符串的首位插入110,在第9位插入10,在第17位插入10三个字符串,得到3个字节
 ④将这3个字节分别转换成16进制编码,得到最终的UTF-8编码。

下面给出一个从网络上得到的Java转码方法,原文链接见:http://jspengxue.javaeye.com/blog/40781。下面的代码做了小小的修改

package example.encoding;

/**
 * The Class CharacterEncodeConverter.
 */
public class CharacterEncodeConverter {

    /**
     * The main method.
     * 
     * @param args the arguments
     */
    public static void main(String[] args) {

        try {
            CharacterEncodeConverter convert = new CharacterEncodeConverter();
            byte[] fullByte = convert.gbk2utf8("中文");
            String fullStr = new String(fullByte, "UTF-8");
            System.out.println("string from GBK to UTF-8 byte:  " + fullStr);

        } catch (Exception e) {
            e.printStackTrace();
        }
    }

    /**
     * Gbk2utf8.
     * 
     * @param chenese the chenese
     * 
     * @return the byte[]
     */
    public byte[] gbk2utf8(String chenese) {
        
        // Step 1: 得到GBK编码下的字符数组,一个中文字符对应这里的一个c[i]
        char c[] = chenese.toCharArray();
        
        // Step 2: UTF-8使用3个字节存放一个中文字符,所以长度必须为字符的3倍
        byte[] fullByte = new byte[3 * c.length];
        
        // Step 3: 循环将字符的GBK编码转换成UTF-8编码
        for (int i = 0; i < c.length; i++) {
            
            // Step 3-1:将字符的ASCII编码转换成2进制值
            int m = (int) c[i];
            String word = Integer.toBinaryString(m);
            System.out.println(word);

            // Step 3-2:将2进制值补足16位(2个字节的长度) 
            StringBuffer sb = new StringBuffer();
            int len = 16 - word.length();
            for (int j = 0; j < len; j++) {
                sb.append("0");
            }
            // Step 3-3:得到该字符最终的2进制GBK编码
            // 形似:1000 0010 0111 1010
            sb.append(word);
            
            // Step 3-4:最关键的步骤,根据UTF-8的汉字编码规则,首字节
            // 以1110开头,次字节以10开头,第3字节以10开头。在原始的2进制
            // 字符串中插入标志位。最终的长度从16--->16+3+2+2=24。
            sb.insert(0, "1110");
            sb.insert(8, "10");
            sb.insert(16, "10");
            System.out.println(sb.toString());

            // Step 3-5:将新的字符串进行分段截取,截为3个字节
            String s1 = sb.substring(0, 8);
            String s2 = sb.substring(8, 16);
            String s3 = sb.substring(16);

            // Step 3-6:最后的步骤,把代表3个字节的字符串按2进制的方式
            // 进行转换,变成2进制的整数,再转换成16进制值
            byte b0 = Integer.valueOf(s1, 2).byteValue();
            byte b1 = Integer.valueOf(s2, 2).byteValue();
            byte b2 = Integer.valueOf(s3, 2).byteValue();
            
            // Step 3-7:把转换后的3个字节按顺序存放到字节数组的对应位置
            byte[] bf = new byte[3];
            bf[0] = b0;
            bf[1] = b1;
            bf[2] = b2;
            
            fullByte[i * 3] = bf[0];            
            fullByte[i * 3 + 1] = bf[1];            
            fullByte[i * 3 + 2] = bf[2];
            
            // Step 3-8:返回继续解析下一个中文字符
        }
        return fullByte;
    }
}

最终的测试结果是正确的:string from GBK to UTF-8 byte:  中文。

但是这个方法并不是完美的!要知道这个规则只对中文起作用,如果传入的字符串中包含有单字节字符,如a+3中文,那么解析的结果就变成:string from GBK to UTF-8 byte:  ?????????中文了。为什么呢?道理很简单,这个方法对原本在UTF-8中应该用单字节表示的数字、英文字符、符号都变成3个字节了,所以这里有9个?,代表被转换后的a、+、3字符。

所以要让这个方法更加完美,最好的方法就是加入对字符Unicode区间的判断

UCS-2编码(16进制) UTF-8 字节流(二进制)
0000 - 007F 0xxxxxxx
0080 - 07FF 110xxxxx 10xxxxxx
0800 - FFFF 1110xxxx 10xxxxxx 10xxxxxx

汉字的Unicode编码范围为\u4E00-\u9FA5 \uF900-\uFA2D,如果不在这个范围内就不是汉字了。

【UTF-8转GBK】

道理和上面的相同,只是一个逆转的过程,不多说了

但是最终的建议还是:能够统一编码就统一编码吧!要知道编码的转换是相当的耗时的工作

编码与乱码(05)---GBK与UTF-8之间的转换--转载的更多相关文章

  1. 【Java基础专题】编码与乱码(05)---GBK与UTF-8之间的转换

    原文出自:http://www.blogjava.net/pengpenglin/archive/2010/02/22/313669.html 在很多论坛.网上经常有网友问" 为什么我使用 ...

  2. C语言实现GBK/GB2312/五大码之间的转换(转)

    源:C语言实现GBK/GB2312/五大码之间的转换 //----------------------------------------------------------------------- ...

  3. 聊聊计算机中的编码(Unicode,GBK,ASCII,utf8,utf16,ISO8859-1等)以及乱码问题的解决办法

    作为一个程序员,一个中国的程序员,想来“乱码”问题基本上都遇到过,也为之头疼过.出现乱码问题的根本原因是编码与解码使用了不同而且不兼容的“标准”,在国内一般出现在中文的编解码过程中. 我们平时常见的编 ...

  4. 【UWP】解析GB2312、GBK编码网页乱码问题

    在WebHttpRequest请求网页后,获取到的中文是乱码,类似这样: <title>˹ŵ��Ϸ���������� - ��̳������ -  ˹ŵ��Ϸ����</title ...

  5. 字符编码之间的转换 utf-8 , gbk等,(解决中文字符串乱码)

    目录 1.背景. 2.编码的理解 3.编码之间的相互转化 4. str类型说明 5. 可以使用的编码类型 6.参考文章 1.背景 Python中与其他程序进行交互时,如果存在字符串交互,特别是字符串中 ...

  6. 转载:谈谈Unicode编码,简要解释UCS、UTF、BMP、BOM等名词

    转载: 谈谈Unicode编码,简要解释UCS.UTF.BMP.BOM等名词 这是一篇程序员写给程序员的趣味读物.所谓趣味是指可以比较轻松地了解一些原来不清楚的概念,增进知识,类似于打RPG游戏的升级 ...

  7. 各种编码中汉字所占字节数;中文字符集编码Unicode ,gb2312 , cp936 ,GBK,GB18030

    vim settings set fileencodings=utf-8,ucs-bom,gb18030,gbk,gb2312,cp936,latin1set termencoding=utf-8se ...

  8. 【JAVA编码专题】UNICODE,GBK,UTF-8区别

    简单来说,unicode,gbk和大五码就是编码的值,而utf-8,uft-16之类就是这个值的表现形式.而前面那三种编码是一兼容的,同一个汉字,那三个码值是完全不一样的.如"汉"的uncode值与g ...

  9. 中文字符集编码Unicode ,gb2312 , cp936 ,GBK,GB18030

    中文字符集编码Unicode ,gb2312 , cp936 ,GBK,GB18030 cp936是微软自己发布的用在文件系统中的编码方式.而bg2312是中国国家标准.我明白mount -t vfa ...

随机推荐

  1. OpenCV FileStorage类读写XML/YML文件

    本文转自:http://www.cnblogs.com/summerRQ/articles/2524560.html 在OpenCV程序中,需要保存中间结果的时候常常会使用.xml / .yml文件, ...

  2. OpenSUSE Leap 42.3下通过Firefox Opera Chromium浏览器直接执行java应用程序(打开java jnlp文件)实现在服务器远程虚拟控制台完成远程管理的方法

    远程虚拟控制台依赖于java运行环境(jre),在通过浏览器打开链接前,系统必须安装jre环境,远程管理控制台其实就是一个java程序,打开相应的网站会下载一个jnlp(java网络加载协议)的文件, ...

  3. unbound和mail服务的部署和简单应用

    1.服务的介绍 Unbound是一个缓存DNS解析器.unbound官网 它使用根区域的内置权威名称服务器列表 (.),所谓的根提示.在收到DNS查询时,它会询问 答案的根名称服务器,几乎在所有情况下 ...

  4. 【python 设计模式】单例模式

    单例模式(Singleton Pattern)是一种常用的软件设计模式,该模式的主要目的是确保某一个类只有一个实例存在.当你希望在整个系统中,某个类只能出现一个实例时,单例对象就能派上用场. 比如,某 ...

  5. 论Nim中的 proc 和 method

    在Nim中.proc 是定义过程的keyword.method 是定义方法的keyword.它们之间根本的差别是proc定义的过程是静态绑定.method定义的方法是动态绑定.谈到静态绑定.动态绑定又 ...

  6. tomcat指定配置文件路径方法

    1.在catalina.sh 中设置JAVA_OPTS,例如: JAVA_OPTS='-server -Xms1024m -Xmx1024m -XX:NewSize=128m -XX:MaxPermS ...

  7. ASP.NET MVC Web API 学习笔记---第一个Web API程序---近来很多大型的平台都公开了Web API

    1. Web API简单说明 近来很多大型的平台都公开了Web API.比如百度地图 Web API,做过地图相关的人都熟悉.公开服务这种方式可以使它易于与各种各样的设备和客户端平台集成功能,以及通过 ...

  8. BZOJ5332: [Sdoi2018]旧试题(莫比乌斯反演)

    时光匆匆,转眼间又是一年寒暑…… 这是小 Q 同学第二次参加省队选拔赛. 今年,小 Q 痛定思痛,不再冒险偷取试题,而是通过练习旧 试题提升个人实力.可是旧试题太多了,小 Q 没日没夜地做题,却看不到 ...

  9. Java证书通信

    一.概念介绍:   加密是将数据资料加密,使得非法用户即使取得加密过的资料,也无法获取正确的资料内容,所以数据加密可以保护数据,防止监听攻击.其重点在于数据的安全性.身份认证是用来判断某个身份的真实性 ...

  10. exit---退出目前的shell

    exit命令   exit命令同于退出shell,并返回给定值.在shell脚本中可以终止当前脚本执行.执行exit可使shell以指定的状态值退出.若不设置状态值参数,则shell以预设值退出.状态 ...