Problem Description
As we all know the Train Problem I, the boss of the Ignatius Train Station want to know if all the trains come in strict-increasing order, how many orders that all the trains can get out of the railway.
 
Input
The input contains several test cases. Each test cases consists of a number N(1<=N<=100). The input is terminated by the end of file.
 
Output
For each test case, you should output how many ways that all the trains can get out of the railway.
 
Sample Input
1 2 3 10
 
Sample Output
1 2 5 16796

Hint

The result will be very large, so you may not process it by 32-bit integers.

 
Author
Ignatius.L
 

出栈次序

一个栈(无穷大)的进栈序列为1,2,3,…,n,有多少个不同的出栈序列?[4-5]

常规分析
首先,我们设f(n)=序列个数为n的出栈序列种数。(我们假定,最后出栈的元素为k,显然,k取不同值时的情况是相互独立的,也就是求出每种k最后出栈的情况数后可用加法原则,由于k最后出栈,因此,在k入栈之前,比k小的值均出栈,此处情况有f(k-1)种,而之后比k大的值入栈,且都在k之前出栈,因此有f(n-k)种方式,由于比k小和比k大的值入栈出栈情况是相互独立的,此处可用乘法原则,f(n-k)*f(k-1)种,求和便是Catalan递归式。ps.author.陶百百)
首次出空之前第一个出栈的序数k将1~n的序列分成两个序列,其中一个是1~k-1,序列个数为k-1,另外一个是k+1~n,序列个数是n-k。
此时,我们若把k视为确定一个序数,那么根据乘法原理,f(n)的问题就等价于——序列个数为k-1的出栈序列种数乘以序列个数为n - k的出栈序列种数,即选择k这个序数的f(n)=f(k-1)×f(n-k)。而k可以选1到n,所以再根据加法原理,将k取不同值的序列种数相加,得到的总序列种数为:f(n)=f(0)f(n-1)+f(1)f(n-2)+……+f(n-1)f(0)。
看到此处,再看看卡特兰数的递推式,答案不言而喻,即为f(n)=h(n)= C(2n,n)/(n+1)= c(2n,n)-c(2n,n-1)(n=0,1,2,……)。
最后,令f(0)=1,f(1)=1。
非常规分析
对于每一个数来说,必须进栈一次、出栈一次。我们把进栈设为状态‘1’,出栈设为状态‘0’。n个数的所有状态对应n个1和n个0组成的2n位二进制数。由于等待入栈的操作数按照1‥n的顺序排列、入栈的操作数b大于等于出栈的操作数a(a≤b),因此输出序列的总数目=由左而右扫描由n个1和n个0组成的2n位二进制数,1的累计数不小于0的累计数的方案种数。
在2n位二进制数中填入n个1的方案数为c(2n,n),不填1的其余n位自动填0。从中减去不符合要求(由左而右扫描,0的累计数大于1的累计数)的方案数即为所求。
不符合要求的数的特征是由左而右扫描时,必然在某一奇数位2m+1位上首先出现m+1个0的累计数和m个1的累计数,此后的2(n-m)-1位上有n-m个 1和n-m-1个0。如若把后面这2(n-m)-1位上的0和1互换,使之成为n-m个0和n-m-1个1,结果得1个由n+1个0和n-1个1组成的2n位数,即一个不合要求的数对应于一个由n+1个0和n-1个1组成的排列。
反过来,任何一个由n+1个0和n-1个1组成的2n位二进制数,由于0的个数多2个,2n为偶数,故必在某一个奇数位上出现0的累计数超过1的累计数。同样在后面部分0和1互换,使之成为由n个0和n个1组成的2n位数,即n+1个0和n-1个1组成的2n位数必对应一个不符合要求的数。
因而不合要求的2n位数与n+1个0,n-1个1组成的排列一一对应。
显然,不符合要求的方案数为c(2n,n+1)。由此得出输出序列的总数目=c(2n,n)-c(2n,n+1)=c(2n,n)/(n+1)=h(n)。
类似问题 买票找零
有2n个人排成一行进入剧场。入场费5元。其中只有n个人有一张5元钞票,另外n人只有10元钞票,剧院无其它钞票,问有多少中方法使得只要有10元的人买票,售票处就有5元的钞票找零?(将持5元者到达视作将5元入栈,持10元者到达视作使栈中某5元出栈)
 
 
#include<iostream>
#include<cstdio>
#include<cstring>
#include<sstream>
#include<algorithm>
#include<queue>
#include<vector>
#include<cmath>
#include<map>
#include<stack>
#include<set>
#include<fstream>
#include<memory>
#include<string>
using namespace std;
typedef long long LL;
typedef unsigned long long ULL;
#define MAXN 102
#define INF 1000000009
/*
给定递增顺序进入,问有多少种方式出栈
1 1
2: 1-2 2-1
3: 123
*/
int a[MAXN][MAXN];
void init()
{
int i, j, yu, len;
a[][] = ; a[][] = ;
a[][] = ; a[][] = ;
len = ;
for (i = ; i < MAXN; i++)
{
yu = ;
for (j = ; j <= len; j++)
{
int tmp = a[i - ][j] * ( * i - ) + yu;
yu = tmp / ;
a[i][j] = tmp % ;
}
while (yu)
{
a[i][++len] = yu % ;
yu /= ;
}
for (j = len; j > ; j--)
{
int tmp = a[i][j] + yu*;
a[i][j] = tmp / (i + );
yu = tmp % (i + );
}
while (!a[i][len])
len--;
a[i][] = len;
}
}
int main()
{
init();
int n;
while (scanf("%d", &n) != EOF)
{
for (int i = a[n][]; i > ; i--)
printf("%d", a[n][i]);
printf("\n");
}
}

Train Problem II HDU 1023 卡特兰数的更多相关文章

  1. HDU 1023 Train Problem II (大数卡特兰数)

    Train Problem II Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) ...

  2. hdu 1023 卡特兰数+高精度

    Train Problem II Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) ...

  3. hdu 1023 卡特兰数《 大数》java

    Train Problem II Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) ...

  4. HDU 1023 Train Problem II( 大数卡特兰 )

    链接:传送门 题意:裸卡特兰数,但是必须用大数做 balabala:上交高精度模板题,增加一下熟悉度 /************************************************ ...

  5. HDU 1023(卡特兰数 数学)

    题意是求一列连续升序的数经过一个栈之后能变成的不同顺序的数目. 开始时依然摸不着头脑,借鉴了别人的博客之后,才知道这是卡特兰数,卡特兰数的计算公式是:a( n )  =  ( ( 4*n-2 ) / ...

  6. Train Problem II(卡特兰数 组合数学)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1023 Train Problem II Time Limit: 2000/1000 MS (Java/ ...

  7. hdu 1023 Train Problem II

    题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=1212 Train Problem II Description As we all know the ...

  8. hdu1032 Train Problem II (卡特兰数)

    题意: 给你一个数n,表示有n辆火车,编号从1到n,入站,问你有多少种出站的可能.    (题于文末) 知识点: ps:百度百科的卡特兰数讲的不错,注意看其参考的博客. 卡特兰数(Catalan):前 ...

  9. Train Problem II(卡特兰数+大数乘除)

    Train Problem II Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) ...

随机推荐

  1. E20170706-sl

    erode    vt.     侵蚀,腐蚀 vi.     逐渐毁坏; 削弱,损害; thin  adj.     薄的; 瘦的; 细的; 稀少的; laptop  n.     便携式电脑;

  2. codevs1993 草地排水(最大流)

    1993 草地排水 USACO  时间限制: 2 s  空间限制: 256000 KB  题目等级 : 钻石 Diamond   题目描述 Description 在农夫约翰的农场上,每逢下雨,Bes ...

  3. C语言编译器为什么能够用C语言编写?

    不知道大家有没有想过一个问题:C语言编译器为什么能够用C语言编写? 所谓C语言编译器,就是把编程得到的文件,比如.c,.h的文件,进行读取,并对内容进行分析,按照C语言的规则,将其转换成cpu可以执行 ...

  4. python导入包出错:ImportError: No module named XXXXX

    python中,每个py文件被称之为模块,每个具有__init__.py文件的目录被称为包.只要模块或者包所在的目录在sys.path中,就可以使用import 模块或import 包来使用. 如果想 ...

  5. 消息队列 (1) mac安装RabbitMQ

    什么是RabbitMQ? RabbitMQ是由Erlang语言编写的实现了高级消息队列协议(AMQP)的开源消息代理软件(也称为面向消息的中间件).支持WIndows.Linux.MAC OS 操作系 ...

  6. MYSQL创建用户和授权方法(测试mysql5.7)

    一.创建用户:  命令:CREATE USER 'username'@'host' IDENTIFIED BY 'password'; 说明:username - 你将创建的用户名, host - 指 ...

  7. JVM之旅------jvm内存模型

    JVM内存管理机制 Java与C++之间有一堆由内存动态分配与垃圾收集技术所围成的“高墙”,墙外面的人想进去,墙里面的人却想出来. —— <深入理解Java虚拟机:JVM高级特性与最佳实践> ...

  8. Android基础TOP2:单机按钮改变字体颜色

    ---恢复内容开始--- Activity: <TextView android:id="@+id/t1" android:textSize="30dp" ...

  9. [Windows Server 2003] 安装IIS6.0及FTP

    ★ 欢迎来到[护卫神·V课堂],网站地址:http://v.huweishen.com★ 护卫神·V课堂 是护卫神旗下专业提供服务器教学视频的网站,每周更新视频.★ 本节我们将带领大家:安装IIS6. ...

  10. [Windows Server 2008] 安装SQL SERVER 2008

    ★ 欢迎来到[护卫神·V课堂],网站地址:http://v.huweishen.com★ 护卫神·V课堂 是护卫神旗下专业提供服务器教学视频的网站,每周更新视频.★ 本节我们将带领大家:安装SQL S ...