UVALive 4223 / HDU 2962 spfa + 二分
Trucking
For the given cargo truck, maximizing the height of the goods transported is equivalent to maximizing the amount of goods transported. For safety reasons, there is a certain height limit for the cargo truck which cannot be exceeded.
1 2 7 5
1 3 4 2
2 4 -1 10
2 5 2 4
3 4 10 1
4 5 8 5
1 5 10
5 6
1 2 7 5
1 3 4 2
2 4 -1 10
2 5 2 4
3 4 10 1
4 5 8 5
1 5 4
3 1
1 2 -1 100
1 3 10
0 0
maximum height = 7
length of shortest route = 20
Case 2:
maximum height = 4
length of shortest route = 8
Case 3:
cannot reach destination
#include <iostream>
#include <cstdio>
#include <cmath>
#include <cstring>
#include <algorithm>
#include<queue>
using namespace std ;
typedef long long ll; const int N = + ;
const int inf = 1e9 + ; int dis[N],head[N],vis[N],t,n,m,T;
struct ss{
int to,h,v,next;
}e[N];
void add(int u,int v,int h,int w) {
e[t].to = v;
e[t].next = head[u];
e[t].v = w;
e[t].h = h;
head[u] = t++;
}
int spfa(int x,int limt) {
queue<int >q;
for(int i = ; i <= n; i++) dis[i] = inf, vis[i] = ;
dis[x] = ;
q.push(x);
vis[x] = ;
while(!q.empty()) {
int k = q.front();
q.pop();vis[k] = ;
for(int i = head[k]; i; i = e[i].next) {
if(e[i].h < limt) continue;
if(dis[e[i].to] > dis[k] + e[i].v) {
dis[e[i].to] = dis[k] + e[i].v;
if(!vis[e[i].to]) {
vis[e[i].to] = ;
q.push(e[i].to);
}
}
}
}
return dis[T];
}
int main() {
int a,b,h,v,S,cas = ;
while(~scanf("%d%d",&n,&m)) {
if(!n || !m) break;
if (cas > ) printf ("\n");
t = ; memset(head,,sizeof(head));
for(int i = ; i <= m; i++) {
scanf("%d%d%d%d",&a,&b,&h,&v);
if(h == -) h = inf;
add(a,b,h,v);
add(b,a,h,v);
}
scanf("%d%d%d",&S,&T,&h);
int l = , r = h, ans = inf;
while(l < r) {
int mid = (l + r + ) >> ;
if(spfa(S,mid) != inf) l = mid, ans = dis[T];
else r = mid - ;
}
printf ("Case %d:\n", cas++);
if(ans != inf) printf ("maximum height = %d\nlength of shortest route = %d\n", l, ans);
else {
printf("cannot reach destination\n");
}
}
return ;
}
UVALive 4223 / HDU 2962 spfa + 二分的更多相关文章
- hdu 2962 Trucking (二分+最短路Spfa)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2962 Trucking Time Limit: 20000/10000 MS (Java/Others ...
- UVALive - 4223(hdu 2926)
---恢复内容开始--- 题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2962 Trucking Time Limit: 20000/10000 MS ...
- hdu 2962 题解
题目 题意 给出一张图,每条道路有限高,给出车子的起点,终点,最高高度,问在保证高度尽可能高的情况下的最短路,如果不存在输出 $ cannot reach destination $ 跟前面 $ ...
- UVALive 4223 Trucking 二分+spfa
Trucking 题目连接: https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8& ...
- HDU - 2962 Trucking SPFA+二分
Trucking A certain local trucking company would like to transport some goods on a cargo truck from o ...
- 二分+最短路 UVALive - 4223
题目链接:https://vjudge.net/contest/244167#problem/E 这题做了好久都还是超时,看了博客才发现可以用二分+最短路(dijkstra和spfa都可以),也可以用 ...
- hdu 1839 Delay Constrained Maximum Capacity Path(spfa+二分)
Delay Constrained Maximum Capacity Path Time Limit: 10000/10000 MS (Java/Others) Memory Limit: 65 ...
- hdu 2962 最短路+二分
题意:最短路上有一条高度限制,给起点和最大高度,求满足高度最大情况下,最短路的距离 不明白为什么枚举所有高度就不对 #include<cstdio> #include<cstring ...
- 【HDOJ1529】【差分约束+SPFA+二分】
http://acm.hdu.edu.cn/showproblem.php?pid=1529 Cashier Employment Time Limit: 2000/1000 MS (Java/Oth ...
随机推荐
- GO语言UDP小笔记
<pre style="margin-top: 0px; margin-bottom: 0px;"><span style=" color:#0000f ...
- ZOJ 3633 Alice's present RMQ
Alice's present Description As a doll master, Alice owns a wide range of dolls, and each of them ha ...
- poj--3678--Katu Puzzle(2-sat 建模)
Katu Puzzle Time Limit: 1000MS Memory Limit: 65536KB 64bit IO Format: %I64d & %I64u Submit S ...
- hdoj--2579--Dating with girls(2)(搜索+三维标记)
Dating with girls(2) Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Oth ...
- FC 网络
通常情况下,SAN系统中服务器与存储介质通过一种特殊的网络相连,这种网络就是FC 网络. FC 网络是一种新发展的与传统的TCP/IP网络并列的一种高速网络.它有自己的地址分配和网络管理的体系. FC ...
- RAC中的各种IP-PUBLIC-VIP-Private-SCAN IP
RAC中的各种IP-PUBLIC-VIP-Private-SCAN IP 1.PUBLIC和VIP Oracle RAC中每个节点都有一个虚拟IP,简称VIP, 与公网PUBLIC IP在同一个 ...
- 【POJ 1082】 Calendar Game
[题目链接] http://poj.org/problem?id=1082 [算法] 对于每种状态,要么必胜,要么必败 记忆化搜索即可 [代码] #include <algorithm> ...
- 2.linux系统命令详解
1 shell shell:命令解释器,根据输入的命令执行相应命令. 1.1 shell家族 察看当前系统下有哪些shell: cat /etc/shells 察看当前系统正在使用的shell ech ...
- python黏包解决方案
解决方案 # 我们可以借助一个模块,这个模块可以把要发送的数据长度转换成固定长度的字节.这样客户端每次接 # 收消息之前只要先接受这个固定长度字节的内容看一看接下来要接收的信息大小,那么最终接受的数据 ...
- 构建工具系列一--Travis-cli
本文地址: http://www.cnblogs.com/blackmanba/articles/continuous-integration-tool-travis-cli.html或者http:/ ...