3D聚类
1 3D聚类和普通的二维聚类实质一样,只不过维数太高了,用三维图来表示了.
下面将官网的改成只生成一个图了
#!/usr/bin/python
# -*- coding:utf-8 -*- print(__doc__) # Code source: Gaël Varoquaux
# Modified for documentation by Jaques Grobler
# License: BSD 3 clause import numpy as np
import matplotlib.pyplot as plt
# Though the following import is not directly being used, it is required
# for 3D projection to work
from mpl_toolkits.mplot3d import Axes3D from sklearn.cluster import KMeans
from sklearn import datasets np.random.seed(5) iris = datasets.load_iris()
X = iris.data
y = iris.target estimators = [('k_means_iris_8', KMeans(n_clusters=8)),
('k_means_iris_3', KMeans(n_clusters=3)),
('k_means_iris_bad_init', KMeans(n_clusters=3, n_init=1,
init='random'))] fignum = 1
titles = ['8 clusters', '3 clusters', '3 clusters, bad initialization']
# for name, est in estimators:
name = 'k_means_iris_8'
est = KMeans(n_clusters=8)
print(est)
picture = plt.figure(fignum, figsize=(4, 3))
ax = Axes3D(picture, rect=[0, 0, .95, 1], elev=48, azim=134)
est.fit(X)
labels = est.labels_ ax.scatter(X[:, 3], X[:, 0], X[:, 2],
c=labels.astype(np.float), edgecolor='k') ax.w_xaxis.set_ticklabels([])
ax.w_yaxis.set_ticklabels([])
ax.w_zaxis.set_ticklabels([])
ax.set_xlabel('Petal width')
ax.set_ylabel('Sepal length')
ax.set_zlabel('Petal length')
ax.set_title(titles[fignum - 1])
ax.dist = 12 # Plot the ground truth
picture = plt.figure(fignum, figsize=(4, 3))
ax = Axes3D(picture, rect=[0, 0, .95, 1], elev=48, azim=134) for name, label in [('Setosa', 0),
('Versicolour', 1),
('Virginica', 2)]:
ax.text3D(X[y == label, 3].mean(),
X[y == label, 0].mean(),
X[y == label, 2].mean() + 2, name,
horizontalalignment='center',
bbox=dict(alpha=.2, edgecolor='w', facecolor='w'))
# Reorder the labels to have colors matching the cluster results
y = np.choose(y, [1, 2, 0]).astype(np.float)
ax.scatter(X[:, 3], X[:, 0], X[:, 2], c=y, edgecolor='k') ax.w_xaxis.set_ticklabels([])
ax.w_yaxis.set_ticklabels([])
ax.w_zaxis.set_ticklabels([])
ax.set_xlabel('Petal width')
ax.set_ylabel('Sepal length')
ax.set_zlabel('Petal length')
ax.set_title('Ground Truth')
ax.dist = 12 plt.show()
官网链接:https://scikit-learn.org/stable/auto_examples/cluster/plot_cluster_iris.html#sphx-glr-auto-examples-cluster-plot-cluster-iris-py
参考:https://mp.weixin.qq.com/s?__biz=MzAxNTc0Mjg0Mg==&mid=2653290530&idx=1&sn=7008fc46129106703a05fdfef1ddd4e6&chksm=802dc237b75a4b2173af42e9703c8591e3a4a37e50b2825f5a00cdba1099b49297f2300169e6&mpshare=1&scene=1&srcid=10178eaFgbBY6JZo05vM66s1&sharer_sharetime=1571301323063&sharer_shareid=a49b9557eabaed0d06d2de311dd63b54&pass_ticket=9rhsUGDoFYNdc2RJMbTG%2BMUeXE%2BY%2Bb9d2F3ZAMul8kAKgV7h8aQNp4StajH8jKTj#rd
3D聚类的更多相关文章
- 机器学习笔记----Fuzzy c-means(FCM)模糊聚类详解及matlab实现
前言:这几天一直都在研究模糊聚类.感觉网上的文档都没有一个详细而具体的讲解,正好今天有时间,就来聊一聊模糊聚类. 一:模糊数学 我们大家都知道计算机其实只认识两个数字0,1.我们平时写程序其实也是这样 ...
- 基于密度聚类的DBSCAN和kmeans算法比较
根据各行业特性,人们提出了多种聚类算法,简单分为:基于层次.划分.密度.图论.网格和模型的几大类. 其中,基于密度的聚类算法以DBSCAN最具有代表性. 场景 一 假设有如下图的一组数据, 生成数据 ...
- 使用k-means对3D网格模型进行分割
使用k-means对3D网格模型进行分割 由于一些原因,最近在做网格分割的相关工作.网格分割的方法有很多,如Easy mesh cutting.K-means.谱分割.基于SDF的分割等.根据对分割要 ...
- 基于谱聚类的三维网格分割算法(Spectral Clustering)
谱聚类(Spectral Clustering)是一种广泛使用的数据聚类算法,[Liu et al. 2004]基于谱聚类算法首次提出了一种三维网格分割方法.该方法首先构建一个相似矩阵用于记录网格上相 ...
- ML: 聚类算法R包-模糊聚类
1965年美国加州大学柏克莱分校的扎德教授第一次提出了'集合'的概念.经过十多年的发展,模糊集合理论渐渐被应用到各个实际应用方面.为克服非此即彼的分类缺点,出现了以模糊集合论为数学基础的聚类分析.用模 ...
- Efficient Online Segmentation for Sparse 3D Laser Scans-- 在线的稀疏点云分割
在基于激光的自动驾驶或者移动机器人的应用中,在移动场景中提取单个对象的能力是十分重要的.因为这样的系统需要在动态的感知环境中感知到周围发生变化或者移动的对象,在感知系统中,将图像或者点云数据预处理成单 ...
- [译]与TensorFlow的第一次接触(三)之聚类
转自 [译]与TensorFlow的第一次接触(三)之聚类 2016.08.09 16:58* 字数 4316 阅读 7916评论 5喜欢 18 前一章节中介绍的线性回归是一种监督学习算法,我们使用数 ...
- 3D 特征点概述(1)
很久没有更新相关内容了,很多朋友过来私信我,但由于时间问题,不能一一为大家解答,本人也不是无所不知的大神,还请各位谅解. 本文主要总结PCL中3D特征点的相关内容,该部分内容在PCL库中都是已经集成的 ...
- segMatch:基于3D点云分割的回环检测
该论文的地址是:https://arxiv.org/pdf/1609.07720.pdf segmatch是一个提供车辆的回环检测的技术,使用提取和匹配分割的三维激光点云技术.分割的例子可以在下面的图 ...
随机推荐
- 安卓的几种alert对话框
@Override public void onClick(View v) { switch (v.getId()) { case R.id.d1: AlertDialog.Builder build ...
- [转载]Ethernet,Half-Duplex/Full-Duplex,CSMA
原文地址:Ethernet,Half-Duplex/Full-Duplex,CSMA/CD,Auto-Negotiation作者:心田麦浪 CSMA/CD(Carrier Sense Multiple ...
- 一、Signalr WebApi客服-客户链接+Redis
一.前端客服代码 <!doctype html> <html> <head> <meta charset="utf-8"> < ...
- (转) Linux权限管理(基本权限、默认权限)
一.文件基本权限 1-1.基本权限的修改 -rw-r--r-- - 第一个"-"表示文件类型(- 文件,d 目录,l 软链接文件) - rw- r-- ...
- php set_magic_quotes_runtime() 函数过时解决方法
PHP5.3中 bool set_magic_quotes_runtime ( bool $new_setting )函数过时.把函数: set_magic_quotes_runtime($newse ...
- LCA统计
读入挂 inline void read(int &v) { v = ; ; ; ') { if (c == '-') { p = -; } c = getchar(); } ') { v = ...
- robotframework 使用Chrome手机模拟器两种方法
Open Google Simulator1 ${device metrics}= Create Dictionary width=${360} height=${640} pixelRatio=${ ...
- SpringMVC的工作原理及MVC设计模式
SpringMVC的工作原理: 1.当用户在浏览器中点击一个链接或者提交一个表单时,那么就会产生一个请求(request).这个请求会携带用户请求的信息,离开浏览器. 2.这个请求会首先到达Sprin ...
- vs2017 mvc 启动时经常出现调用的目标发生异常
1.vs 2017 调试web 程序时老是出现调用的目标发生异常 本人眼拙,基本上看了网站说的一些方法,设置环境变量是无效的,只有一个办法,卸载重装. 1.0 卸载过程 打开计算机-卸载或更改软件- ...
- 25.复杂链表的复制(python)
题目描述 输入一个复杂链表(每个节点中有节点值,以及两个指针,一个指向下一个节点,另一个特殊指针指向任意一个节点),返回结果为复制后复杂链表的head.(注意,输出结果中请不要返回参数中的节点引用,否 ...