题目描述

Bessie is planning the annual Great Cow Gathering for cows all across the country and, of course, she would like to choose the most convenient location for the gathering to take place.

Bessie正在计划一年一度的奶牛大集会,来自全国各地的奶牛将来参加这一次集会。当然,她会选择最方便的地点来举办这次集会。

Each cow lives in one of N (1 <= N <= 100,000) different barns (conveniently numbered 1..N) which are connected by N-1 roads in such a way that it is possible to get from any barn to any other barn via the roads. Road i connects barns A_i and B_i (1 <= A_i <= N; 1 <= B_i <= N) and has length L_i (1 <= L_i <= 1,000). The Great Cow Gathering can be held at any one of these N barns. Moreover, barn i has C_i (0 <= C_i <= 1,000) cows living in it.

每个奶牛居住在 N(1<=N<=100,000) 个农场中的一个,这些农场由N-1条道路连接,并且从任意一个农场都能够到达另外一个农场。道路i连接农场A_i和B_i(1 <= A_i <=N; 1 <= B_i <= N),长度为L_i(1 <= L_i <= 1,000)。集会可以在N个农场中的任意一个举行。另外,每个牛棚中居住者C_i(0 <= C_i <= 1,000)只奶牛。

When choosing the barn in which to hold the Cow Gathering, Bessie wishes to maximize the convenience (which is to say minimize the inconvenience) of the chosen location. The inconvenience of choosing barn X for the gathering is the sum of the distances all of the cows need to travel to reach barn X (i.e., if the distance from barn i to barn X is 20, then the travel distance is C_i*20). Help Bessie choose the most convenient location for the Great Cow Gathering.

在选择集会的地点的时候,Bessie希望最大化方便的程度(也就是最小化不方便程度)。比如选择第X个农场作为集会地点,它的不方便程度是其它牛棚中每只奶牛去参加集会所走的路程之和,(比如,农场i到达农场X的距离是20,那么总路程就是C_i*20)。帮助Bessie找出最方便的地点来举行大集会。

Consider a country with five barns with [various capacities] connected by various roads of varying lengths. In this set of barns, neither barn 3 nor barn 4 houses any cows.

1 3 4 5

@--1--@--3--@--3--@[2]

[1] |

2 | @[1] 2 Bessie can hold the Gathering in any of five barns; here is the table of inconveniences calculated for each possible location:

Gather ----- Inconvenience ------

Location B1 B2 B3 B4 B5 Total

1 0 3 0 0 14 17

2 3 0 0 0 16 19

3 1 2 0 0 12 15

4 4 5 0 0 6 15

5 7 8 0 0 0 15

If Bessie holds the gathering in barn 1, then the inconveniences from each barn are:

Barn 1 0 -- no travel time there!

Barn 2 3 -- total travel distance is 2+1=3 x 1 cow = 3 Barn 3 0 -- no cows there!

Barn 4 0 -- no cows there!

Barn 5 14 -- total travel distance is 3+3+1=7 x 2 cows = 14 So the total inconvenience is 17.

The best possible convenience is 15, achievable at by holding the Gathering at barns 3, 4, or 5.

输入格式

* Line 1: A single integer: N

* Lines 2..N+1: Line i+1 contains a single integer: C_i

* Lines N+2..2*N: Line i+N+1 contains three integers: A_i, B_i, and L_i

第一行:一个整数 N 。

第二到 N+1 行:第 i+1 行有一个整数 C_i

第 N+2 行到 2*N 行:第 i+N+1 行为 3 个整数:A_i,B_i 和 L_i。

输出格式

* Line 1: The minimum inconvenience possible

第一行:一个值,表示最小的不方便值。

输入输出样例

输入 #1
5
1
1
0
0
2
1 3 1
2 3 2
3 4 3
4 5 3
输出 #1
15 
 
分析:
我们可以考虑如果依次枚举每一个点作为集会的地点然后使用DFS进行计算,然后由任意一个父节点推出子节点的时间即可。 CODE:
 #include <cstdio>
#include <cstring>
#include <cmath>
#include <iostream>
#include <algorithm>
using namespace std;
const int M=;
int nn[M],next[M],head[M],to[M],adj[M],n,cnt,p[M],jl[M],v[M];
long long ans=;
long long best;
void tt(int x,int y,int z){
to[++cnt]=y;
next[cnt]=head[x];
head[x]=cnt;
adj[cnt]=z;
}
struct node{
int x;
long long qz;
}a[M];
void dfs1(int x,int now){
p[x]=nn[x];
for (int i=head[x];i!=-;i=next[i])
if (to[i]!=now){
jl[to[i]]=jl[x]+adj[i];
dfs1(to[i],x);
p[x]+=p[to[i]];
}
return;
}
void dfs2(long long cost){
int l=,r=;
a[]=(node){,cost};
v[]=;
while (l<=r){
int xx=a[l].x;
long long cnt=a[l].qz;
best=min(best,cnt);
l++;
for (int i=head[xx];i!=-;i=next[i])
if (!v[to[i]]){
a[++r]=(node){to[i],cnt+(p[]-p[to[i]])*1ll*adj[i]-p[to[i]]*1ll*adj[i]};
v[to[i]]=;
}
}
return;
}
int main(){
//freopen("gather.in","r",stdin);
//freopen("gather.out","w",stdout);
scanf("%d",&n);
memset(head,-,sizeof(head));
for (int i=;i<=n;i++) scanf("%d",&nn[i]);
for (int i=;i<n;i++){
int x,y,z;
scanf("%d%d%d",&x,&y,&z);
tt(x,y,z);
tt(y,x,z);
}
dfs1(,);
for (int i=;i<=n;i++) ans+=1ll*nn[i]*jl[i];
best=ans;
dfs2(ans);
cout<<best;
return ;
}

 
 
 

[USACO10MAR]伟大的奶牛聚集Great Cow Gat…的更多相关文章

  1. P2986 [USACO10MAR]伟大的奶牛聚集Great Cow Gat…

    题目描述 Bessie is planning the annual Great Cow Gathering for cows all across the country and, of cours ...

  2. 洛谷 P2986 [USACO10MAR]伟大的奶牛聚集Great Cow Gat…(树规)

    题目描述 Bessie is planning the annual Great Cow Gathering for cows all across the country and, of cours ...

  3. 【题解】Luogu p2986 [USACO10MAR]伟大的奶牛聚集Great Cow Gat 树型dp

    题目描述 Bessie is planning the annual Great Cow Gathering for cows all across the country and, of cours ...

  4. [USACO10MAR]伟大的奶牛聚集Great Cow Gat…【树形dp】By cellur925

    题目传送门 首先这道题是在树上进行的,然后求最小的不方便程度,比较符合dp的性质,那么我们就可以搞一搞树形dp. 设计状态:f[i]表示以i作为聚集地的最小不方便程度.那么我们还需要各点间的距离,但是 ...

  5. [洛谷P2986][USACO10MAR]伟大的奶牛聚集Great Cow Gat…

    题目大意:给你一棵树,每个点有点权,边有边权,求一个点,使得其他所有点到这个点的距离和最短,输出这个距离 题解:树形$DP$,思路清晰,转移显然 卡点:无 C++ Code: #include < ...

  6. [USACO10MAR]伟大的奶牛聚集Great Cow Gat… ($dfs$,树的遍历)

    题目链接 Solution 辣鸡题...因为一个函数名看了我贼久. 思路很简单,可以先随便指定一个根,然后考虑换根的变化. 每一次把根从 \(x\) 换成 \(x\) 的一个子节点 \(y\),记录一 ...

  7. LUOGU P2986 [USACO10MAR]伟大的奶牛聚集Great Cow Gat…

    传送门 解题思路 首先第一遍dfs预处理出每个点的子树的siz,然后可以处理出放在根节点的答案,然后递推可得其他答案,递推方程 sum[u]=sum[x]-(val[i]*siz[u])+(siz[1 ...

  8. BZOJ 1827 洛谷 2986 [USACO10MAR]伟大的奶牛聚集Great Cow Gather

    [题解] 很容易想到暴力做法,枚举每个点,然后对于每个点O(N)遍历整棵树计算答案.这样整个效率是O(N^2)的,显然不行. 我们考虑如果已知当前某个点的答案,如何快速计算它的儿子的答案. 显然选择它 ...

  9. 【luoguP2986】[USACO10MAR]伟大的奶牛聚集Great Cow Gathering

    题目链接 先把\(1\)作为根求每个子树的\(size\),算出把\(1\)作为集会点的代价,不难发现把集会点移动到\(u\)的儿子\(v\)上后的代价为原代价-\(v\)的\(size\)*边权+( ...

随机推荐

  1. POJ 3468 A Simple Problem with Integers(线段树,区间更新,区间求和)

    A Simple Problem with Integers Time Limit: 5000MS   Memory Limit: 131072K Total Submissions: 67511   ...

  2. new做了些什么?

    new做了些什么? function People(name, age){ this.name = name; this.age = age; }; var xiaoming = new People ...

  3. 2018-8-10-git-push-错误-hook-declined-

    title author date CreateTime categories git push 错误 hook declined lindexi 2018-08-10 19:16:52 +0800 ...

  4. input file 上传文件类型控制

    文件类型 accept *.3gpp audio/3gpp, video/3gpp.ac3 audio/ac3.asf allpication/vnd.ms-asf.au audio/basic.cs ...

  5. java--CharAt,StartWith

    public class CharAtStartWithDemo { public static void main(String[] args){ //jdk8 testCharAt();//1 t ...

  6. Python自动补全缩写意义

    自动补全的变量的类别p:parameter 参数 m:method 方法(类实例方法)调用方式classA aa.method()或者classA().method() c:class 类 v:var ...

  7. 总结web开发的四大域

    一.HttpSession域: 1.作用域范围: 一次会话. 数据产生后,使用后,如果还需要继续使用的情况下,HttpSession域 2.HttpSession作用: 在第一次调用request.g ...

  8. nmap使用笔记

    扫描全端口判断服务 nmap ip -T4 -Pn -sV -p 1-65535 扫描端口并且标记可以爆破的服务 nmap ip --script=ftp-brute,imap-brute,smtp- ...

  9. Delphi ini文件结构简介

    一.INI文件的结构:; 注释[小节名]关键字=值 INI文件允许有多个小节,每个小节又允许有多个关键字, “=”后面是该关键字的值. 值的类型有三种:字符串.整型数值和布尔值.其中字符串存贮在INI ...

  10. SQL Server 2014 各版本介绍

    SQL Server 2014 各版本介绍 目前,SQL Server 2014 分为主要版本和专业版. 在选择版本的时候可以根据您具体的需要进行抉择,如果你需要一个免费的数据库管理系统,那么就选择 ...