平衡树(fhq无旋treap)
splay
普通平衡树
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
int read(void) {
int x = 0; bool f = 0;
char c = getchar();
for (;!isdigit(c);c=getchar()) if (c=='-') f=1;
for (;isdigit(c);c=getchar()) x=(x<<3)+(x<<1)+(c^48);
if (f) return -x;
return x;
}
const int N = 100005;
const int INF = 0x7fffffff;
int v[N], f[N], son[N][2];
int cnt[N], siz[N], tot;
int val[N], n, sz, root;
inline void update(int x) {
siz[x] = siz[son[x][0]] + siz[son[x][1]] + cnt[x];
}
inline void rotate(int x) {
int y = f[x], z = f[y];;
int k = son[f[x]][1] == x, w = son[x][k^1];
son[y][k] = w, f[w] = y;
son[z][son[z][1] == y] = x, f[x] = z;
son[x][k^1] = y, f[y] = x;
update(y), update(x);
}
inline void splay(int x,int t) {
while (f[x] != t) {
int y = f[x], z = f[y];
if (z != t) {
if ((son[y][1] == x) ^ (son[z][1] == y))
rotate(x);
else rotate(y);
}
rotate(x);
}
if (t == 0) root = x;
}
inline void insert(int x) {
int p = root, pre = 0;
while (p && val[p] != x)
pre = p, p = son[p][val[p] < x];
if (p) cnt[p]++;
else {
p = ++sz; cnt[p] = siz[p] = 1;
if (pre) son[pre][val[pre] < x] = p;
son[p][0] = son[p][1] = 0;
f[p] = pre, val[p] = x;
}
splay(p, 0);
}
inline void find(int x) {
int p = root;
while (son[p][val[p] < x] && val[p] != x)
p = son[p][val[p] < x];
splay(p, 0);
}
inline int get_rk(int x) {
find(x);
return siz[son[root][0]];
}
inline int kth(int x) {
int p = root; x++;
while (true) {
if (son[p][0] && x <= siz[son[p][0]]) p = son[p][0];
else if (x > siz[son[p][0]] + cnt[p])
x -= siz[son[p][0]] + cnt[p], p = son[p][1];
else return val[p];
}
}
inline int get_pre(int x) {
find(x);
if (val[root] < x) return root;
int p = son[root][0];
while (son[p][1]) p = son[p][1];
return p;
}
inline int get_nxt(int x) {
find(x);
if (val[root] > x) return root;
int p = son[root][1];
while (son[p][0]) p = son[p][0];
return p;
}
inline void del(int x) {
int pre = get_pre(x), nxt = get_nxt(x);
splay(pre, 0), splay(nxt, root);
int p = son[nxt][0];
if (cnt[p] > 1) cnt[p]--, splay(p, 0);
else son[nxt][0] = 0, update(nxt), update(root);
}
int main() {
int opt, x; n = read();
insert(INF), insert(-INF);
for (int i = 1;i <= n; i++) {
opt = read(), x = read();
if (opt == 1) insert(x);
else if (opt == 2) del(x);
else if (opt == 3) printf ("%d\n", get_rk(x));
else if (opt == 4) printf ("%d\n", kth(x));
else if (opt == 5) printf ("%d\n", val[get_pre(x)]);
else printf ("%d\n", val[get_nxt(x)]);
}
return 0;
}
文艺平衡树
#include<iostream>
#include<cstring>
#include<cstdio>
using namespace std;
const int N = 200050;
const int INF = 0x7fffffff;
int read(void) {
int x = 0; bool f = 0;
char c = getchar();
for (;!isdigit(c);c=getchar()) if (c=='-') f=1;
for (;isdigit(c);c=getchar()) x=(x<<3)+(x<<1)+(c^48);
return f ? -x : x;
}
int val[N], son[N][2];
int tag[N], f[N], n, sz;
int siz[N], rt;
void update(int x) {
siz[x] = siz[son[x][1]] + siz[son[x][0]] + 1;
}
void spread(int x) {
if (!tag[x]) return;
swap(son[x][0], son[x][1]);
if (son[x][0]) tag[son[x][0]] ^= 1;
if (son[x][1]) tag[son[x][1]] ^= 1;
tag[x] = 0;
}
int kth(int k) {
int x = rt;
while (true) {
spread(x);
if (siz[son[x][0]] >= k) x = son[x][0];
else if (siz[son[x][0]] + 1 == k) return x;
else k -= siz[son[x][0]] + 1, x = son[x][1];
}
}
void rotate(int x) {
int y = f[x], z = f[y];
int k = son[y][1] == x, w = son[x][k^1];
son[y][k] = w, f[w] = y;
f[y] = x, son[x][k^1] = y;
son[z][son[z][1]==y] = x, f[x] = z;
update(y), update(x);
}
void splay(int x,int t) {
while (f[x] != t) {
int y = f[x], z = f[y];
if (z != t) {
if ((son[z][1]==y)^(son[y][1]==x))
rotate(x);
else rotate(y);
}
rotate(x);
}
if (t == 0) rt = x;
}
void insert(int x) {
int p = rt, pre = 0;
while (p)
pre = p, p = son[p][val[p] < x];
p = ++sz;
if (pre) son[pre][val[pre]<x] = p;
siz[p] = 1, son[p][0] = son[p][1] = 0;
f[p] = pre, val[p] = x;
splay(p, 0);
}
void rec(int x) {
spread(x);
if (son[x][0]) rec(son[x][0]);
if (val[x] > 1 && val[x] < n + 2)
printf ("%d ", val[x]-1);
if (son[x][1]) rec(son[x][1]);
}
inline void work(int l,int r) {
l = kth(l), r = kth(r+2);
splay(l, 0); splay(r, rt);
tag[son[son[rt][1]][0]] ^= 1;
}
int m, l, r;
int main() {
n = read(), m = read();
for (int i = 1;i <= n + 2; i++)
insert(i);
while (m--) {
l = read(), r = read();
work(l, r);
}
rec(rt);
cout << endl;
return 0;
}
fhq板子(代码正确且风格易懂)
#include<iostream>
#include<cstring>
#include<cstdio>
#include<ctime>
#include<cstdlib>
using namespace std;
const int N = 105000;
int val[N], son[N][2];
int rnd[N], tot, n;
int siz[N], root, a, p, x, y, z;
inline void update(int x) {
siz[x] = siz[son[x][1]] + siz[son[x][0]] + 1;
}
inline int build(int x) {
siz[++tot] = 1, rnd[tot] = rand();
val[tot] = x; return tot;
}
int merge(int x,int y) {
if (!x || !y) return x + y;
if (rnd[x] < rnd[y]) {
son[x][1] = merge(son[x][1], y);
update(x); return x;
}
son[y][0] = merge(x, son[y][0]);
update(y); return y;
}
void split(int now,int k,int &x,int &y) {
if (!now) x = y = 0;
else {
if (val[now] <= k) x = now, split(son[x][1], k, son[x][1], y);
else y = now, split(son[y][0], k, x, son[y][0]);
update(now);
}
}
inline int kth(int now, int k) {
while (1) {
if (k <= siz[son[now][0]]) now = son[now][0];
else if (k == siz[son[now][0]] + 1) return now;
else k -= siz[son[now][0]] + 1, now = son[now][1];
}
}
template <typename T>
void read(T &x) {
x = 0; int f = 1;char c = getchar();
while (!isdigit(c)) { if (c == '-') f = -1; c = getchar();}
while (isdigit(c)) { x = (x << 3)+(x << 1) + c-'0'; c = getchar();}
x *= f;
}
int main() {
srand(time(0));
read(n);
for (int i = 1;i <= n; i++) {
read(p), read(a);
if (p == 1) {
split(root, a, x, y);
root = merge(merge(x, build(a)), y);
}
else if (p == 2) {
split(root, a, x, y);
split(x, a-1, x, z);
z = merge(son[z][0], son[z][1]);
root = merge(merge(x, z), y);
}
else if (p == 3) {
split(root, a-1, x, y);
printf ("%d\n", siz[x] + 1);
root = merge(x, y);
}
else if (p == 4) printf ("%d\n", val[kth(root, a)]);
else if (p == 5) {
split(root, a-1, x, y);
printf ("%d\n", val[kth(x, siz[x])]);
root = merge(x, y);
}
else {
split(root, a, x, y);
printf ("%d\n", val[kth(y, 1)]);
root = merge(x, y);
}
}
return 0;
}
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cstdlib>
#include<ctime>
using namespace std;
const int N = 100050;
int rnd[N], siz[N];
int cnt, n, l, r;
int tag[N], son[N][2];
int val[N], root, x, y, z;
inline int build(int x) {
siz[++cnt] = 1, val[cnt] = x;
rnd[cnt] = rand(); return cnt;
}
inline void update(int x) {
siz[x] = siz[son[x][1]] + siz[son[x][0]] + 1;
}
void spread(int x) {
if (tag[x]) {
swap(son[x][0], son[x][1]);
if (son[x][0]) tag[son[x][0]] ^= 1;
if (son[x][1]) tag[son[x][1]] ^= 1;
tag[x] = 0;
}
}
void split(int now,int k,int &x,int &y) {
if (!now) x = y = 0;
else {
spread(now);
if (siz[son[now][0]] < k) x = now, split(son[x][1], k - siz[son[now][0]] - 1, son[x][1], y);
else y = now, split(son[y][0], k, x, son[y][0]);
update(now);
}
}
int merge(int x,int y) {
if(!x || !y) return x + y;
if (rnd[x] < rnd[y]) {
spread(x);
son[x][1] = merge(son[x][1], y);
update(x); return x;
}
spread(y);
son[y][0] = merge(x, son[y][0]);
update(y); return y;
}
template <typename T>
void read(T &x) {
x = 0; int f = 1;char c = getchar();
while (!isdigit(c)) { if (c == '-') f = -1; c = getchar();}
while (isdigit(c)) { x = (x << 3)+(x << 1) + c-'0'; c = getchar();}
x *= f;
}
int m;
void res(int x) {
if (!x) return;
spread(x);
res(son[x][0]);
printf ("%d ", val[x]);
res(son[x][1]);
}
int main() {
read(n), read(m);
for (int i = 1;i <= n; i++) root = merge(root, build(i));
while (m--) {
read(l), read(r);
split(root, l - 1, x, y);
split(y, r - l+ 1, y, z);
tag[y] ^= 1;
root = merge(merge(x, y), z);
}
res(root);
return 0;
}
可持久化平衡树
p3835
#include<iostream>
#include<cstdio>
#include<ctime>
#include<cstdlib>
#include<cstring>
using namespace std;
const int N = 500500 * 50;
const int INF = 2147483647;
int T[N], val[N], rnd[N];
int siz[N], son[N][2];
int cnt;
template <typename T>
void read(T &x) {
x = 0; int f = 1;char c = getchar();
while (!isdigit(c)) { if (c == '-') f = -1; c = getchar();}
while (isdigit(c)) { x = (x << 3)+(x << 1) + c-'0'; c = getchar();}
x *= f;
}
inline void update(int x) {
siz[x] = siz[son[x][0]] + siz[son[x][1]] + 1;
}
inline void cpy(int x,int y) {
siz[x] = siz[y], son[x][1] = son[y][1];
son[x][0] = son[y][0];
val[x] = val[y], rnd[x] = rnd[y];
}
inline int build(int x) {
val[++cnt] = x, siz[cnt] = 1;
rnd[cnt] = rand(); return cnt;
}
void split(int now,int k,int &x,int &y) {
if (!now) x = y = 0;
else {
if (val[now] <= k) {
x = ++cnt, cpy(x, now), split(son[x][1], k, son[x][1], y);
update(x);
}
else {
y = ++cnt, cpy(y, now), split(son[y][0], k, x, son[y][0]);
update(y);
}
}
}
int merge(int x,int y) {
if (!x || !y) return x + y;
if (rnd[x] < rnd[y]) {
int p = ++cnt; cpy(p, x);
son[p][1] = merge(son[p][1], y);
update(p); return p;
}
int p = ++cnt; cpy(p, y);
son[p][0] = merge(x, son[p][0]);
update(p); return p;
}
int kth(int now,int x) {
while (1) {
if (siz[son[now][0]] >= x) now = son[now][0];
else if (siz[son[now][0]] + 1 == x) return now;
else x -= siz[son[now][0]] + 1, now = son[now][1];
}
}
int n, x, y, z;
int op, P, a;
int main() {
srand(20040202);
read(n);
for (int i = 1;i <= n; i++) {
read(P), read(op), read(a);
T[i] = T[P];
if (op == 1) {
split(T[i], a, x, y);
T[i] = merge(merge(x, build(a)), y);
}
else if (op == 2) {
split(T[i], a, x, z);
split(x, a-1, x, y);
y = merge(son[y][0], son[y][1]);
T[i] = merge(merge(x, y), z);
}
else if (op == 3) {
split(T[i], a-1, x, y);
printf ("%d\n", siz[x] + 1);
T[i] = merge(x, y);
}
else if (op == 4) printf ("%d\n", val[kth(T[i], a)]);
else if (op == 5) {
split(T[i], a-1, x, y);
if (siz[x] == 0) printf ("%d\n", -INF);
else printf ("%d\n", val[kth(x, siz[x])]);
T[i] = merge(x, y);
}
else if (op == 6) {
split(T[i], a, x, y);
if (siz[y] == 0) printf ("%d\n", INF);
else printf ("%d\n", val[kth(y, 1)]);
T[i] = merge(x, y);
}
}
return 0;
}
平衡树(fhq无旋treap)的更多相关文章
- 【序列操作V】平衡树(无旋treap)
题目描述 维护一个队列,初始为空.依次加入 n(1≤n≤105)个数 ai(-109≤ai≤109),第 i(1≤i≤n)个数加入到当前序列第 bi(0≤bi≤当前序列长度)个数后面.输出最终队列. ...
- [Bzoj3223][Tyvj1729] 文艺平衡树(splay/无旋Treap)
题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=3223 平衡树处理区间问题的入门题目,普通平衡树那道题在维护平衡树上是以每个数的值作为维护 ...
- [Bzoj3224][Tyvj1728] 普通平衡树(splay/无旋Treap)
题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=3224 平衡树入门题,学习学习. splay(学习yyb巨佬) #include<b ...
- BZOJ - 3223 Tyvj 1729 文艺平衡树 (splay/无旋treap)
题目链接 splay: #include<bits/stdc++.h> using namespace std; typedef long long ll; ,inf=0x3f3f3f3f ...
- 浅谈无旋treap(fhq_treap)
一.简介 无旋Treap(fhq_treap),是一种不用旋转的treap,其代码复杂度不高,应用范围广(能代替普通treap和splay的所有功能),是一种极其强大的平衡树. 无旋Treap是一个叫 ...
- Luogu 3369 / BZOJ 3224 - 普通平衡树 - [无旋Treap]
题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=3224 https://www.luogu.org/problemnew/show/P3 ...
- [转载]无旋treap:从好奇到入门(例题:bzoj3224 普通平衡树)
转载自ZZH大佬,原文:http://www.cnblogs.com/LadyLex/p/7182491.html 今天我们来学习一种新的数据结构:无旋treap.它和splay一样支持区间操作,和t ...
- [您有新的未分配科技点]无旋treap:从好奇到入门(例题:bzoj3224 普通平衡树)
今天我们来学习一种新的数据结构:无旋treap.它和splay一样支持区间操作,和treap一样简单易懂,同时还支持可持久化. 无旋treap的节点定义和treap一样,都要同时满足树性质和堆性质,我 ...
- [BZOJ3223]文艺平衡树 无旋Treap
3223: Tyvj 1729 文艺平衡树 Time Limit: 10 Sec Memory Limit: 128 MB Description 您需要写一种数据结构(可参考题目标题),来维护一个 ...
随机推荐
- 原生js实现简单的下拉刷新功能
前言: 我们在浏览移动端web页面的时候,经常会用到下拉刷新. 现在我们用原生的js实现这个非常简单的下拉刷新功能. (温馨提示:本文比较基础,功能也很简单.写的不好的地方,希望大神提点一二.) 一. ...
- 生产环境跑PHP动态程序
Nginx + PHP5(FastCGI)生产环境跑PHP动态程序可超过“700次请求/秒” 我生产环境下的两台Nginx + PHP5(FastCGI)服务器,跑多个一般复杂的纯PHP动态程序, ...
- Acwing-274-移动服务(DP)
链接: https://www.acwing.com/problem/content/276/ 题意: 一个公司有三个移动服务员,最初分别在位置1,2,3处. 如果某个位置(用一个整数表示)有一个请求 ...
- 将Excel数据读入DataGridView
OpenFileDialog openFileDialog = new OpenFileDialog(); openFileDialog.Filter = "Microsoft Excel ...
- pycharm安装与永久激活
1.Pycham下载 https://www.jetbrains.com/pycharm/download/#section=windows 直接下载专业版 2.安装 这里就不必细说,直接next就O ...
- 利用gephi作人物网络图
一.先利用word2vec训练数据得到模型 a.利用jieba对文本进行分词,并只提取词性为人名的词,去除分词长度为1和大于4的词 b.利用word2vec训练分词后的文本,并存储 c.利用训练后的模 ...
- 理解ext文件系统
理解ext文件系统 @(0001学习博客) 注意:本文参考骏马金龙的博客,详情请移步浏览 一.一些常见的文件系统 Linux的文件系统: ext2(无日志功能), ext3, ext4, xfs, r ...
- Java 工程师成神之路
基础篇 → 什么是面向对象 面向对象.面向过程 是一种新兴的程序设计方法,或者是一种新的程序设计规范(paradigm),其基本思想是使用对象.类.继承.封装.多态等基本概念来进行程序设计.从现实世界 ...
- 深入理解二阶段提交协议(DDB对XA悬挂事务的处理分析)(一)
https://sq.163yun.com/blog/article/165554812476866560
- Misha and Permutations Summation
A - Misha and Permutations Summation 首先这个 mod n! 因为数量级上的差别最多只会对康拓展开的第一项起作用所以这个题并不需要把 ord (p) 和 ord ( ...