RocketMQ吐血总结

架构

概念模型

最基本的概念模型与扩展后段概念模型

存储模型

RocketMQ吐血总结

User Guide

  • RocketMQ是一款分布式消息中间件,最初是由阿里巴巴消息中间件团队研发并大规模应用于生产系统,满足线上海量消息堆积的需求, 在2016年底捐赠给Apache开源基金会成为孵化项目,经过不到一年时间正式成为了Apache顶级项目;早期阿里曾经基于ActiveMQ研发消息系统, 随着业务消息的规模增大,瓶颈逐渐显现,后来也考虑过Kafka,但因为在低延迟和高可靠性方面没有选择,最后才自主研发了RocketMQ, 各方面的性能都比目前已有的消息队列要好,RocketMQ和Kafka在概念和原理上都非常相似,所以也经常被拿来对比;RocketMQ默认采用长轮询的拉模式, 单机支持千万级别的消息堆积,可以非常好的应用在海量消息系统中。
  • NameServer可以部署多个,相互之间独立,其他角色同时向多个NameServer机器上报状态信息,从而达到热备份的目的。 NameServer本身是无状态的,也就是说NameServer中的Broker、Topic等状态信息不会持久存储,都是由各个角色定时上报并 存储到内存中的(NameServer支持配置参数的持久化,一般用不到)。
  • 为何不用ZooKeeper?ZooKeeper的功能很强大,包括自动Master选举等,RocketMQ的架构设计决定了它不需要进行Master选举, 用不到这些复杂的功能,只需要一个轻量级的元数据服务器就足够了。值得注意的是,NameServer并没有提供类似Zookeeper的watcher机制, 而是采用了每30s心跳机制。
  • 心跳机制
    • 单个Broker跟所有Namesrv保持心跳请求,心跳间隔为30秒,心跳请求中包括当前Broker所有的Topic信息。Namesrv会反查Broer的心跳信息, 如果某个Broker在2分钟之内都没有心跳,则认为该Broker下线,调整Topic跟Broker的对应关系。但此时Namesrv不会主动通知Producer、Consumer有Broker宕机。
    • Consumer跟Broker是长连接,会每隔30秒发心跳信息到Broker。Broker端每10秒检查一次当前存活的Consumer,若发现某个Consumer 2分钟内没有心跳, 就断开与该Consumer的连接,并且向该消费组的其他实例发送通知,触发该消费者集群的负载均衡(rebalance)。
    • 生产者每30秒从Namesrv获取Topic跟Broker的映射关系,更新到本地内存中。再跟Topic涉及的所有Broker建立长连接,每隔30秒发一次心跳。 在Broker端也会每10秒扫描一次当前注册的Producer,如果发现某个Producer超过2分钟都没有发心跳,则断开连接。
  • Namesrv压力不会太大,平时主要开销是在维持心跳和提供Topic-Broker的关系数据。但有一点需要注意,Broker向Namesrv发心跳时, 会带上当前自己所负责的所有Topic信息,如果Topic个数太多(万级别),会导致一次心跳中,就Topic的数据就几十M,网络情况差的话, 网络传输失败,心跳失败,导致Namesrv误认为Broker心跳失败。
  • 每个主题可设置队列个数,自动创建主题时默认4个,需要顺序消费的消息发往同一队列,比如同一订单号相关的几条需要顺序消费的消息发往同一队列, 顺序消费的特点的是,不会有两个消费者共同消费任一队列,且当消费者数量小于队列数时,消费者会消费多个队列。至于消息重复,在消 费端处理。RocketMQ 4.3+支持事务消息,可用于分布式事务场景(最终一致性)。
  • 关于queueNums:
    • 客户端自动创建,Math.min算法决定最多只会创建8个(BrokerConfig)队列,若要超过8个,可通过控制台创建/修改,Topic配置保存在store/config/topics.json
    • 消费负载均衡的最小粒度是队列,Consumer的数量应不大于队列数
    • 读写队列数(writeQueueNums/readQueueNums)是RocketMQ特有的概念,可通过console修改。当readQueueNums不等于writeQueueNums时,会有什么影响呢?

  1. topicRouteData = this.mQClientAPIImpl.getDefaultTopicRouteInfoFromNameServer(defaultMQProducer.getCreateTopicKey(), 1000 * 3);
  2. if (topicRouteData != null) {
  3. for (QueueData data : topicRouteData.getQueueDatas()) {
  4. int queueNums = Math.min(defaultMQProducer.getDefaultTopicQueueNums(), data.getReadQueueNums());
  5. data.setReadQueueNums(queueNums);
  6. data.setWriteQueueNums(queueNums);
  7. }
  8. }
  • Broker上存Topic信息,Topic由多个队列组成,队列会平均分散在多个Broker上。Producer的发送机制保证消息尽量平均分布到 所有队列中,最终效果就是所有消息都平均落在每个Broker上。
  • RocketMQ的消息的存储是由ConsumeQueue和CommitLog配合来完成的,ConsumeQueue中只存储很少的数据,消息主体都是通过CommitLog来进行读写。 如果某个消息只在CommitLog中有数据,而ConsumeQueue中没有,则消费者无法消费,RocketMQ的事务消息实现就利用了这一点。
    • CommitLog:是消息主体以及元数据的存储主体,对CommitLog建立一个ConsumeQueue,每个ConsumeQueue对应一个(概念模型中的)MessageQueue,所以只要有 CommitLog在,ConsumeQueue即使数据丢失,仍然可以恢复出来。
    • ConsumeQueue:是一个消息的逻辑队列,存储了这个Queue在CommitLog中的起始offset,log大小和MessageTag的hashCode。每个Topic下的每个Queue都有一个对应的 ConsumeQueue文件,例如Topic中有三个队列,每个队列中的消息索引都会有一个编号,编号从0开始,往上递增。并由此一个位点offset的概念,有了这个概念,就可以对 Consumer端的消费情况进行队列定义。
  • RocketMQ的高性能在于顺序写盘(CommitLog)、零拷贝和跳跃读(尽量命中PageCache),高可靠性在于刷盘和Master/Slave,另外NameServer 全部挂掉不影响已经运行的Broker,Producer,Consumer。
  • 发送消息负载均衡,且发送消息线程安全(可满足多个实例死循环发消息),集群消费模式下消费者端负载均衡,这些特性加上上述的高性能读写, 共同造就了RocketMQ的高并发读写能力。
  • 刷盘和主从同步均为异步(默认)时,broker进程挂掉(例如重启),消息依然不会丢失,因为broker shutdown时会执行persist。 当物理机器宕机时,才有消息丢失的风险。另外,master挂掉后,消费者从slave消费消息,但slave不能写消息。
  • RocketMQ具有很好动态伸缩能力(非顺序消息),伸缩性体现在Topic和Broker两个维度。
    • Topic维度:假如一个Topic的消息量特别大,但集群水位压力还是很低,就可以扩大该Topic的队列数,Topic的队列数跟发送、消费速度成正比。
    • Broker维度:如果集群水位很高了,需要扩容,直接加机器部署Broker就可以。Broker起来后向Namesrv注册,Producer、Consumer通过Namesrv 发现新Broker,立即跟该Broker直连,收发消息。
  • Producer: 失败默认重试2次;sync/async;ProducerGroup,在事务消息机制中,如果发送消息的producer在还未commit/rollback前挂掉了,broker会在一段时间后回查ProducerGroup里的其他实例,确认消息应该commit/rollback
  • Consumer: DefaultPushConsumer/DefaultPullConsumer,push也是用pull实现的,采用的是长轮询方式;CLUSTERING模式下,一条消息只会被ConsumerGroup里的一个实例消费,但可以被多个不同的ConsumerGroup消费,BROADCASTING模式下,一条消息会被ConsumerGroup里的所有实例消费。
  • DefaultPushConsumer: Broker收到新消息请求后,如果队列里没有新消息,并不急于返回,通过一个循环不断查看状态,每次waitForRunning一段时间(5s),然后在check。当一直没有新消息,第三次check时,等待时间超过suspendMaxTimeMills(15s),就返回空结果。在等待的过程中,Broker收到了新的消息后会直接调用notifyMessageArriving返回请求结果。“长轮询”的核心是,Broker端Hold住(挂起)客户端客户端过来的请求一小段时间,在这个时间内有新消息到达,就利用现有的连接立刻返回消息给Consumer。“长轮询”的主动权还是掌握在Consumer手中,Broker即使有大量消息积压,也不会主动推送给Consumer。长轮询方式的局限性,是在Hold住Consumer请求的时候需要占用资源,它适合用在消息队列这种客户端连接数可控的场景中。
  • DefaultPullConsumer: 需要用户自己处理遍历MessageQueue、保存Offset,所以PullConsumer有更多的自主性和灵活性。
  • 对于集群模式的非顺序消息,消费失败默认重试16次,延迟等级为3~18。(messageDelayLevel = "1s 5s 10s 30s 1m 2m 3m 4m 5m 6m 7m 8m 9m 10m 20m 30m 1h 2h")
  • MQClientInstance是客户端各种类型的Consumer和Producer的底层类,由它与NameServer和Broker打交道。如果创建Consumer或Producer 类型的时候不手动指定instanceName,进程中只会有一个MQClientInstance对象,即当一个Java程序需要连接多个MQ集群时,必须手动指定不同的instanceName。需要一提的是,当消费者(不同jvm实例)都在同一台物理机上时,若指定instanceName,消费负载均衡将失效(每个实例都将消费所有消息)。另外,在一个jvm里模拟集群消费时,必须指定不同的instanceName,否则启动时会提示ConsumerGroup已存在。

More

原文总结:https://blog.csdn.net/javahongxi/article/details/84931747

RocketMQ吐血总结的更多相关文章

  1. 常用FTP命令 1. 连接ftp服务器

    1. 连接ftp服务器 格式:ftp [hostname| ip-address]a)在linux命令行下输入: ftp 192.168.1.1 b)服务器询问你用户名和密码,分别输入用户名和相应密码 ...

  2. 消息队列面试题、RabbitMQ面试题、Kafka面试题、RocketMQ面试题 (史上最全、持续更新、吐血推荐)

    文章很长,建议收藏起来,慢慢读! 疯狂创客圈为小伙伴奉上以下珍贵的学习资源: 疯狂创客圈 经典图书 : <Netty Zookeeper Redis 高并发实战> 面试必备 + 大厂必备 ...

  3. JVM面试题(史上最强、持续更新、吐血推荐)

    文章很长而且持续更新,建议收藏起来,慢慢读! 高并发 发烧友社群:疯狂创客圈(总入口) 奉上以下珍贵的学习资源: 疯狂创客圈 经典图书 : 极致经典 + 社群大片好评 < Java 高并发 三部 ...

  4. Java基础面试题(史上最全、持续更新、吐血推荐)

    文章很长,建议收藏起来,慢慢读! 疯狂创客圈为小伙伴奉上以下珍贵的学习资源: 疯狂创客圈 经典图书 : <Netty Zookeeper Redis 高并发实战> 面试必备 + 大厂必备 ...

  5. Java算法面试题(史上最强、持续更新、吐血推荐)

    文章很长,建议收藏起来,慢慢读! 疯狂创客圈为小伙伴奉上以下珍贵的学习资源: 疯狂创客圈 经典图书 : <Netty Zookeeper Redis 高并发实战> 面试必备 + 大厂必备 ...

  6. SpringBoot面试题 (史上最全、持续更新、吐血推荐)

    文章很长,建议收藏起来,慢慢读! 疯狂创客圈为小伙伴奉上以下珍贵的学习资源: 疯狂创客圈 经典图书 : <Netty Zookeeper Redis 高并发实战> 面试必备 + 大厂必备 ...

  7. Redis 面试题 - 收藏版 (持续更新、吐血推荐)

    文章很长,建议收藏起来,慢慢读! 疯狂创客圈为小伙伴奉上以下珍贵的学习资源: 疯狂创客圈 经典图书 : <Netty Zookeeper Redis 高并发实战> 面试必备 + 大厂必备 ...

  8. Zookeeper 面试题(持续更新、吐血推荐)

    文章很长,建议收藏起来,慢慢读! 疯狂创客圈为小伙伴奉上以下珍贵的学习资源: 疯狂创客圈 经典图书 : <Netty Zookeeper Redis 高并发实战> 面试必备 + 大厂必备 ...

  9. Linux面试题(史上最全、持续更新、吐血推荐)

    文章很长,建议收藏起来,慢慢读! 疯狂创客圈为小伙伴奉上以下珍贵的学习资源: 疯狂创客圈 经典图书 : <Netty Zookeeper Redis 高并发实战> 面试必备 + 大厂必备 ...

随机推荐

  1. AtCoder AGC017C Snuke and Spells

    题目链接 https://atcoder.jp/contests/agc017/tasks/agc017_c 题解 很久前不会做看了题解,现在又看了一下,只想说,这种智商题真的杀我... 转化成如果现 ...

  2. 缓存区溢出之slmail fuzzing

    这是我们的实验环境 kali 172.18.5.118smtp windows2003  172.18.5.117  pop3 110 smtp 25 本机 172.18.5.114 已经知道slma ...

  3. sqlmap自动注入 --REQUEST

    --delay=“参数” 每次http(s)请求之间的延迟时间,浮点数,单位为秒,默认无延迟 --timeout=“参数” 请求超时,浮点数,默认为30秒 --retries=“参数” http(s) ...

  4. [CSP-S模拟测试]:硬币(博弈论+DP+拓展域并查集)

    题目传送门(内部题135) 输入格式 第一行包含一个整数$T$,表示数据组数. 对于每组数据,第一行两个整数$h,w$,表示棋盘大小. 接下来$h$行,每行一个长度为$w$的字符串,每个位置由为$o, ...

  5. STS(Spring tool suite)集成配置jdk,maven和Tomcat

    STS是spring官网的一个集成开发工具,最近在学springboot,所以用了. 在本文中将介绍如下内容: 搭建开发的 JDK(1.8) 环境. 配置 Maven 环境. 配置 Tomcat 环境 ...

  6. jpa repostiory

    JpaRepository的查询   image.png   image.png Spring Data JPA框架在进行方法名解析时,会先把方法名多余的前缀截取掉,比如 find.findBy.re ...

  7. CSS Selectors

    CSS selectors are used to "find" (or select) HTML elements based on their element name, id ...

  8. oj.1677矩形嵌套,动态规划 ,贪心

    #include<iostream> #include<algorithm> #include<cstring> using namespace std; stru ...

  9. hdfs、zookeepeer之HA模式

    HA简介 1.所谓HA,即高可用(high available) 2.消除单点故障,避免集群瘫痪,hdfs中namenode保存了整个集群的元数据,如果namenode所在机器宕机,则整个集群瘫痪,H ...

  10. Ajax+PHP实现的进度条--实例

    之前重点学习PHP,所以javascript.Ajax都比较弱一点.现在也开始补课了,今天实现了一个进度条的例子,感觉Ajax实现动态页面真的很厉害,并没有想象中的那么难理解. 进度条作为反应实时传输 ...