题目

一个很自然的想法是容斥。

假如只有一种硬币,那么答案就是没有限制的情况下买\(s\)的方案数减去强制用了\(d+1\)枚情况下买\(s\)的方案数即没有限制的情况下买\(s-c(d+1)\)的方案数。

现在是多种硬币,所以要加个容斥。

那么我们需要预处理一下没有限制的情况下买\(i\)的方案数。

#include<cstdio>
#define ll long long
const int N=100001;
int c[5],d[5];ll f[N];
int read(){int x;scanf("%d",&x);return x;}
int main()
{
int i,j,s,t,flg;ll ans;f[0]=1;
for(i=1;i<=4;++i) c[i]=read();
for(i=1;i<=4;++i) for(j=c[i];j<=100000;++j) f[j]+=f[j-c[i]];
for(int T=read();T;--T)
{
ans=0;
for(i=1;i<=4;++i) d[i]=read();
s=read();
for(i=0;i<=15;++i)
{
t=s,flg=0;
for(j=0;j<4;++j) if(i&1<<j) t-=c[j+1]*(d[j+1]+1),flg^=1;
if(t<0) continue;
ans+=(flg? -1:1)*f[t];
}
printf("%lld\n",ans);
}
}

Luogu P1450 [HAOI2008]硬币购物的更多相关文章

  1. [Luogu P1450] [HAOI2008]硬币购物 背包DP+容斥

    题面 传送门:https://www.luogu.org/problemnew/show/P1450 Solution 这是一道很有意思的在背包里面做容斥的题目. 首先,我们可以很轻松地想到暴力做背包 ...

  2. Luogu P1450 [HAOI2008]硬币购物 背包+容斥原理

    考虑如果没有个数的限制,那么就是一个完全背包,所以先跑一个完全背包,求出没有个数限制的方案数即可. 因为有个数的限制,所以容斥一下:没有1个超过限制的方案=至少0个超过限制-至少1个超过限制+至少2个 ...

  3. 2021.12.06 P1450 [HAOI2008]硬币购物(组合数学+抽屉原理+DP)

    2021.12.06 P1450 [HAOI2008]硬币购物(组合数学+抽屉原理+DP) https://www.luogu.com.cn/problem/P1450 题意: 共有 44 种硬币.面 ...

  4. P1450 [HAOI2008]硬币购物(完全背包+容斥)

    P1450 [HAOI2008]硬币购物 暴力做法:每次询问跑一遍多重背包. 考虑正解 其实每次跑多重背包都有一部分是被重复算的,浪费了大量时间 考虑先做一遍完全背包 算出$f[i]$表示买价值$i$ ...

  5. 洛谷—— P1450 [HAOI2008]硬币购物

    P1450 [HAOI2008]硬币购物 硬币购物一共有$4$种硬币.面值分别为$c1,c2,c3,c4$.某人去商店买东西,去了$tot$次.每次带$di$枚$ci$硬币,买$si$的价值的东西.请 ...

  6. 洛谷P1450 [HAOI2008]硬币购物

    题目描述 硬币购物一共有4种硬币.面值分别为c1,c2,c3,c4.某人去商店买东西,去了tot次.每次带di枚ci硬币,买si的价值的东西.请问每次有多少种付款方法. 输入输出格式 输入格式: 第一 ...

  7. P1450 [HAOI2008]硬币购物

    题目描述 硬币购物一共有4种硬币.面值分别为c1,c2,c3,c4.某人去商店买东西,去了tot次.每次带di枚ci硬币,买si的价值的东西.请问每次有多少种付款方法. di,s<=100000 ...

  8. 洛谷P1450 [HAOI2008]硬币购物(背包问题,容斥原理)

    洛谷题目传送门 我实在是太弱了,第一次正儿八经写背包DP,第一次领会如此巧妙的容斥原理的应用...... 对每次询问都做一遍多重背包,显然T飞,就不考虑了 关键就在于每次询问如何利用重复的信息 我这么 ...

  9. Luogu 1450 [HAOI2008]硬币购物

    优美的dp + 容斥. 首先可以不用考虑数量限制,处理一个完全背包$f_{i}$表示用四种面值的硬币购买的方案数,对于每一个询问,我们考虑容斥. 我们的$f_{s}$其实多包含了$f_{s - c_{ ...

随机推荐

  1. node之events 模块,并通过实例化 EventEmitter 类来绑定和监听事件

    例子来源:http://www.runoob.com/nodejs/nodejs-event-loop.html http://www.runoob.com/nodejs/nodejs-event.h ...

  2. react-router-dom 实现左侧导航

    1.介绍react-router-dom https://reacttraining.com/react-router/web/example/basic 这个官网有很多栗子可以练手 1.1 Hash ...

  3. Express + Mongoose 极简入门

    今天尝试使用express + mongoose,构建了一个简单的Hello world,实现以下功能: 定义mongodb使用的Schema,一个User 访问/输出Hello world 访问/i ...

  4. 6张图解释IO流

    1.字节流InputStream 2.字节流OutputStream 3.字符流Reader 4.字符流Writer 5.节点流 6.处理流 总结: 节点流可以直接连接在数据源上,处理流不可以:节点流 ...

  5. HTML控件 隐藏

    div的visibility可以控制div的显示和隐藏,但是隐藏后页面显示空白: style="visibility: none;" document.getElementById ...

  6. TensorFlow线性回归

    目录 数据可视化 梯度下降 结果可视化 数据可视化 import numpy as np import tensorflow as tf import matplotlib.pyplot as plt ...

  7. nginx location正则

    nginx location正则写法 一个示例: location = / { # 精确匹配 / ,主机名后面不能带任何字符串 [ configuration A ] } location / { # ...

  8. 1.5 log4j使用教程

    日志是应用软件中不可缺少的部分,Apache的开源项目log4j是一个功能强大的日志组件,提供方便的日志记录.在apache网站:jakarta.apache.org/log4j 可以免费下载到Log ...

  9. OpenCV学习笔记(11)——Canny边缘检测

    了解Canny边缘检测的概念 1.原理 Canny边缘检测是一种非常流行的边缘检测算法,是 John F.Canny在1986年提出的.它是一个有很多步构成的算法 1)噪声去除 使用5*5的高斯滤波器 ...

  10. mysql允许外网访问 和修改mysql 账号密码

    mysql的root账户,我在连接时通常用的是localhost或127.0.0.1,公司的测试服务器上的mysql也是localhost所以我想访问无法访问,测试暂停. 解决方法如下: 1,修改表, ...