hdu 3917 修路与公司 最大权闭合图 好题
Road constructions
Time Limit: 6000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1590 Accepted Submission(s): 534
decided which section is assigned to which company, the associated cost and the direction of each road.
Due to the insufficiency of national fiscal revenue and special taxation system (the tax paid by each company pays is a fixed amount and tax payment occurs at the
beginning of the construction of the project) The government wishes to complete the project in several years and collects as much tax as possible to support the public
expense
For the restrictions of construction and engineering techniques, if a company is required to start the construction, then itself and its associated companies have to
complete all the tasks they commit (if company A constructs a road
from city 1 to city 2, company B constructs a road from city 2 to city 3, company C constructs a road from city 1 to city 3, we call
companies A and B are associated and other company pairs have no such relationship, pay attention, in this example and a are not associated, in other words,’
associated' is a directed relationship).
Now the question is what the maximum income the government can obtain in the first year is?
Each test case starts with a line, which contains 2 positive integers, n and m (1<=n<=1000, 1<=m<=5000).
The next line contains m integer which means the tax of each company.
The Third line has an integer k (1<=k<=3000)which indicates the number of the roads.
Then k lines fellow, each contains 4 integers, the start of the roads, the end of the road, the company is responsible for this road and the cost of the road.
The end of the input with two zero
500 10
4
1 2 1 10
2 3 1 20
4 3 1 30
1 4 2 60
4 2
500 100
5
1 2 1 10
2 3 1 20
4 3 1 30
4 3 2 10
1 4 2 60
3 1
10
3
1 2 1 100
2 3 1 100
3 1 1 100
0 0
470
0
for second test case, if you choose company 2 responsible ways, then you must choose the path of responsible company 1, but if you choose company 1, then you
do not have to choose company 2.
题意:国家现有K条有向路可能被建设(可建可不建),每个有向路由某个公司担任修建,且国家需要支付建设此路的花费,从M个公司中选出一些公司去完成建设 这些被选出的公司所担任修建的所有相关路,如果A公司修u->2,而B公司修2->v,那么选了A公司也必须选B公(即A公司与B公司有关联)。并且这些被选出的公司需要向国家交不同的税,问国家能得到的利益最多是多少。
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cmath>
#include <vector>
#include <queue>
#include <map>
#include <algorithm>
#include <set>
using namespace std;
#define MM(a,b) memset(a,b,sizeof(a))
typedef long long ll;
typedef unsigned long long ULL;
const int mod = 1000000007;
const double eps = 1e-10;
const int inf = 0x3f3f3f3f;
const int big=50000;
int max(int a,int b) {return a>b?a:b;};
int min(int a,int b) {return a<b?a:b;};
struct edge{
int to,cap,rev;
}; vector<edge> G[5010];
vector<int> st[1010],ed[1010]; int n,m,k,level[5010],sum,iter[5010],cost[5010],tax[5010]; void add_edge(int u,int v,int cap)
{
G[u].push_back(edge{v,cap,G[v].size()});
G[v].push_back(edge{u,0,G[u].size()-1});
} void bfs(int s)
{
queue<int> q;
q.push(s);
level[s]=1;
while(q.size())
{
int now=q.front();q.pop();
for(int i=0;i<G[now].size();i++)
if(G[now][i].cap>0)
{
edge e=G[now][i];
if(level[e.to]<0)
{
level[e.to]=level[now]+1;
q.push(e.to);
}
}
}
}
int dfs(int s,int t,int minn)
{
if(s==t)
return minn;
for(int &i=iter[s];i<G[s].size();i++)
{
edge &e=G[s][i];
if(level[e.to]>level[s]&&e.cap>0)
{
int k=dfs(e.to,t,min(minn,e.cap));
if(k>0)
{
e.cap-=k;
G[e.to][e.rev].cap+=k;
return k;
}
}
}
return 0;
} int max_flow(int s,int t)
{
int ans=0,temp;
for(;;)
{
memset(level,-1,sizeof(level));
bfs(s);
if(level[t]<0)
return ans;
memset(iter,0,sizeof(iter));
while((temp=dfs(s,t,inf))>0)
ans+=temp;
}
return ans;
} void build()
{
for(int i=1;i<=m;i++)
if(cost[i]>0)
{
add_edge(0,i,cost[i]);
sum+=cost[i];
}
else if(cost[i]<0)
add_edge(i,m+1,-cost[i]); for(int u=1;u<=n;u++)
for(int i=0;i<st[u].size();i++)
for(int j=0;j<ed[u].size();j++)
{
int a=st[u][i],b=ed[u][j];
add_edge(b,a,inf);
}
} void init()
{
for(int i=0;i<=m+1;i++) G[i].clear();
for(int i=1;i<=n;i++)
{
st[i].clear();
ed[i].clear();
} MM(cost,0);
MM(tax,0);
} int main()
{
while(~scanf("%d %d",&n,&m)&&(n||m))
{
init();
sum=0;
for(int i=1;i<=m;i++)
scanf("%d",&tax[i]); scanf("%d",&k);
for(int i=1;i<=k;i++)
{
int u,v,b,c;
scanf("%d %d %d %d",&u,&v,&b,&c); st[u].push_back(b);
ed[v].push_back(b);//st与ed的妙用,,刚开始用的麻烦的爆搜。。
cost[b]+=(-c);//切记转换成负数
} for(int i=1;i<=m;i++)
cost[i]+=tax[i];//构建的新图中节点值 build(); printf("%d\n",sum-max_flow(0,m+1));
}
return 0;
}
分析:很好的一道题,,就是原题题意神坑,,再加上把100看成了10,,太不细心了;
1,将原图上无法进行最大权闭合图,,想想就知道了,,转化成公司上的闭合圈最大图(选a公司那么必须选b公司),
2.最大权闭合图中的sum-maxflow中的sum指的是需要跑最小割的新图中节点中值>0的数之和
hdu 3917 修路与公司 最大权闭合图 好题的更多相关文章
- HDU 3061:Battle(最大权闭合图)
http://acm.hdu.edu.cn/showproblem.php?pid=3061 题意:中文题意. 思路:和上一题神似啊,比上一题还简单,重新看了遍论文让我对这个理解更加深了. 闭合图:如 ...
- hdu 4971/ 2014多校/最大权闭合图
题意:n个项目(每一个相应获得一定价值).m个技术问题(每一个须要支出一定价值),每一个项目必须要攻克若干个技术问题.技术难题之间有拓扑关系. 关键是建图.一看,第一感觉就是最大权闭合图,马上建好了图 ...
- hdu 4971 多校10最大权闭合图
/* 很明显的最大权闭合图题 */ #include<stdio.h> #include<string.h> #include<queue> using names ...
- hdu 3879 hdu 3917 构造最大权闭合图 俩经典题
hdu3879 base station : 各一个无向图,点的权是负的,边的权是正的.自己建一个子图,使得获利最大. 一看,就感觉按最大密度子图的构想:选了边那么连接的俩端点必需选,于是就以边做点 ...
- hdu 3879 Base Station 最大权闭合图
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3879 A famous mobile communication company is plannin ...
- hdu 3061 Battle 最大权闭合图
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3061 由于小白同学近期习武十分刻苦,很快被晋升为天策军的统帅.而他上任的第一天,就面对了一场极其困难的 ...
- hdu 3061 hdu 3996 最大权闭合图 最后一斩
hdu 3061 Battle :一看就是明显的最大权闭合图了,水提......SB题也不说边数多少....因为开始时候数组开小了,WA....后来一气之下,开到100W,A了.. hdu3996. ...
- hdu - 4971 - A simple brute force problem.(最大权闭合图)
题意:n(n <= 20)个项目,m(m <= 50)个技术问题,做完一个项目能够有收益profit (<= 1000),做完一个项目必须解决对应的技术问题,解决一个技术问题须要付出 ...
- HDU 3879 && BZOJ 1497:Base Station && 最大获利 (最大权闭合图)
http://acm.hdu.edu.cn/showproblem.php?pid=3879 http://www.lydsy.com/JudgeOnline/problem.php?id=1497 ...
随机推荐
- [转帖]Java 8新特性探究 前言
Java 8新特性探究 前言 https://my.oschina.net/benhaile/blog/174136 讲下java的历史 感觉挺好的. 评论 17 jdk8java8javase新特性 ...
- 小菜鸟之java异常
一.异常简介 什么是异常? 异常就是有异于常态,和正常情况不一样,有错误出错.在java中,阻止当前方法或作用域的情况,称之为异常. java中异常的体系是怎么样的呢? 1.Java中的所有不正常类都 ...
- Oracle表的Rowid字段
Rowid 字段类型: Rowid 是一行数据的一个唯一标识. ROWID 是数据的详细地址,通过 rowid,oracle 可以快速的定位某行具体的数据的位置. ROWID 可以分为物理 rowid ...
- 第二大矩阵面积--(stack)牛客多校第二场-- Second Large Rectangle
题意: 给你一幅图,问你第二大矩形面积是多少. 思路: 直接一行行跑stack求最大矩阵面积的经典算法,不断更新第二大矩形面积,注意第二大矩形可能在第一大矩形里面. #define IOS ios_b ...
- thinkPHP模型before_insert新增前 before_update更新前 before_write写入前 区别
thinkPHP模型中有个save方法,可用于新增数据和修改数据,这里容易出现混淆. 经过调试: before_write,不管是插入新数据还是修改数据都会执行: before_insert,只有插入 ...
- python-day43(正式学习)
目录 复习 今日内容 字段操作 多表关系 外键 一对一:无级联关系 一对一:有级联关系 一对多 多对多 复习 """ 1.数据库的配置:my.ini [mysqld][m ...
- Linux中使用curl命令发送带参数的get请求和post请求
GET 请求 curl命令 + 请求接口的地址 curl http://**.**.***.**/SeedAgile/SeedApi/querySprintByRequirementNo?parame ...
- JS基础_数据类型-Number类型
<!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...
- Kong/Konga - Docker容器化安装
1.0 安装kong + postgresDB docker network create kong-net docker pull postgres:latest docker run -d --n ...
- Linux服务之httpd基本配置详解
一.基本介绍 1.版本 httpd-1.3 httpd-2.0 httpd-2.2 httpd-2.4 目前为止最新的版本是httpd-2.4.6,但是这里我用的是系统自带的RPM包安装的httpd- ...