一.下载中文维基百科数据https://dumps.wikimedia.org/zhwiki/
并使用gensim中的wikicorpus解析提取xml中的内容

二.利用opencc繁体转简体

三.利用jieba对转换后的文本进行分词,去停词

四.利用gensim中的word2vec训练分词后的文本

五.测试

python代码如下:

#!/user/bin/python
#coding:utf-8
__author__ = 'yan.shi'
from gensim.corpora import WikiCorpus
import opencc
import jieba
import codecs
from gensim.models import Word2Vec
from gensim.models.word2vec import LineSentence
import multiprocessing '''
读取中文wiki语料库,并解析提取xml中的内容
'''
def dataprocess():
space=b' '
i=0
output=open('E:\zhwiki-articles.txt','wb')
wiki=WikiCorpus('E:\zhwiki-latest-pages-articles.xml.bz2',lemmatize=False,dictionary={})
for text in wiki.get_texts():
output.write(space.join(text)+b'\n')
i=i+1
if(i%10000==0):
print('Saved '+str(i)+' articles')
output.close()
print('Finished Saved '+str(i)+' articles') '''
加载停用词表
'''
def createstoplist(stoppath):
print('load stopwords...')
stoplist=[line.strip() for line in codecs.open(stoppath,'r',encoding='utf-8').readlines()]
stopwords={}.fromkeys(stoplist)
return stopwords '''
过滤英文
'''
def isAlpha(word):
try:
return word.encode('ascii').isalpha()
except UnicodeEncodeError:
return False '''
opencc繁体转简体,jieba中文分词
'''
def trans_seg():
stopwords=createstoplist('E:\stopwords.txt')
cc=opencc.OpenCC('t2s')
i=0
with codecs.open('E:\zhwiki-segment.txt','w','utf-8') as wopen:
print('开始...')
with codecs.open('E:\wiki-utf8.txt','r','utf-8') as ropen:
while True:
line=ropen.readline().strip()
i+=1
print('line '+str(i))
text=''
for char in line.split():
if isAlpha(char):
continue
char=cc.convert(char)
text+=char
words=jieba.cut(text)
seg=''
for word in words:
if word not in stopwords:
if len(word)>1 and isAlpha(word)==False: #去掉长度小于1的词和英文
if word !='\t':
seg+=word+' '
wopen.write(seg+'\n')
print('结束!') '''
利用gensim中的word2vec训练词向量
'''
def word2vec():
print('Start...')
rawdata='G:\python workspace\zhwiki-segment.txt'
modelpath='G:\python workspace\modeldata.model'
#vectorpath='E:\word2vec\vector'
model=Word2Vec(LineSentence(rawdata),size=400,window=5,min_count=5,workers=multiprocessing.cpu_count())#参数说明,gensim函数库的Word2Vec的参数说明
model.save(modelpath)
#model.wv.save_word2vec_format(vectorpath,binary=False)
print("Finished!") def wordsimilarity():
model=Word2Vec.load('E:\word2vec\modeldata.model')
semi=''
try:
semi=model.most_similar('日本'.decode('utf-8'),topn=10)#python3以上就不需要decode
except KeyError:
print('The word not in vocabulary!') #print(model[u'日本'])#打印词向量
for term in semi:
print('%s,%s' %(term[0],term[1])) if __name__=='__main__':
#dataprocess()
#trans_seg()
#word2vec()
wordsimilarity()

日本的相关词:

使用word2vec对中文维基百科数据进行处理的更多相关文章

  1. Windows下基于python3使用word2vec训练中文维基百科语料(二)

    在上一篇对中文维基百科语料处理将其转换成.txt的文本文档的基础上,我们要将为文本转换成向量,首先都要对文本进行预处理 步骤四:由于得到的中文维基百科中有许多繁体字,所以我们现在就是将繁体字转换成简体 ...

  2. Windows下基于python3使用word2vec训练中文维基百科语料(一)

    在进行自然语言处理之前,首先需要一个语料,这里选择维基百科中文语料,由于维基百科是 .xml.bz2文件,所以要将其转换成.txt文件,下面就是相关步骤: 步骤一:下载维基百科中文语料 https:/ ...

  3. Windows下基于python3使用word2vec训练中文维基百科语料(三)

    对前两篇获取到的词向量模型进行使用: 代码如下: import gensim model = gensim.models.Word2Vec.load('wiki.zh.text.model') fla ...

  4. 中文维基百科分类提取(jwpl)--构建知识图谱数据获取

    首先感谢 : 1.https://blog.csdn.net/qq_39023569/article/details/88556301 2.https://www.cnblogs.com/Cheris ...

  5. 使用JWPL (Java Wikipedia Library)操作维基百科数据

    使用JWPL (Java Wikipedia Library)操作维基百科数据 1. JWPL介绍 JWPL(Java Wikipedia Library)是一个开源的访问wikipeida数据的Ja ...

  6. 110G离线维基百科数据免费拿

    110G离线维基百科数据免费拿.. 资料获取方式,关注公总号RaoRao1994,查看往期精彩-所有文章,即可获取资源下载链接 更多资源获取,请关注公总号RaoRao1994

  7. 中英文维基百科语料上的Word2Vec实验

    最近试了一下Word2Vec, GloVe 以及对应的python版本 gensim word2vec 和 python-glove,就有心在一个更大规模的语料上测试一下,自然而然维基百科的语料进入了 ...

  8. JWPL工具处理维基百科wikipedia数据用于NLP

    JWPL处理维基百科数据用于NLP 处理zhwiki JWPL是一个Wikipedia处理工具,主要功能是将Wikipedia dump的文件经过处理.优化导入mysql数据库,用于NLP过程.以下以 ...

  9. 搜索和浏览离线 Wikipedia 维基百科(中/英)数据工具

    为什么使用离线维基百科?一是因为最近英文维基百科被封,无法访问:二是不受网络限制,使用方便,缺点是不能及时更新,可能会有不影响阅读的乱码. 目前,主要有两种工具用来搜索和浏览离线维基百科数据:Kiwi ...

随机推荐

  1. 算法 - k-means算法

    一.聚类思想 所谓聚类算法是指将一堆没有标签的数据自动划分成几类的方法,属于无监督学习方法,这个方法要保证同一类的数据有相似的特征,如下图所示:     根据样本之间的距离或者说是相似性(亲疏性),把 ...

  2. Firefox、IE、chrome浏览器和驱动下载地址

    一.Firefox和驱动下载地址 selenium2.X最高支持的Firefox版本为46,使用selenium2.X的话不需要下载火狐驱动,只需要配置火狐的启动路径即可. Selenium3.0开始 ...

  3. PHP之常用操作

    在最高权限下执行相关命令 1)查看PHP配置 php --ini Configuration File (php.ini) Path: /www/server/php//etc Loaded Conf ...

  4. Django框架——基础之路由系统(urls.py)

    1.URL路由系统前言 URL是Web服务的入口,用户通过浏览器发送过来的任何请求,都是发送到一个指定的URL地址,然后被响应. 在Django项目中编写路由,就是向外暴露我们接收哪些URL的请求,除 ...

  5. MySQL 下载与安装

    从MySQL官网下载安装文件,我的电脑是window10 64位的,下载社区版本,选择mysql community server,再下载64位的. 官网链接:https://www.mysql.co ...

  6. ubuntu自己定义环境变量,替代常用的操作命令

    问题背景是这样的,因为自己会经常用自己的用户链接服务器,比如自己的用户是yongjie,然后服务器的ip是162.105.97.31 所以经常执行的命令是ssh yongjie@162.105.97. ...

  7. centos 7 私有云盘 OwnCloud 安装搭建脚本

    #!/bin/bash #Build LAMP Server Conf mysql_secure_installation service mariadb restart systemctl enab ...

  8. jq常用方法

    $().addClass(css中定义的样式类型);            给某个元素添加样式$().attr({src:”test.jpg”,alt:”test Image”});        给 ...

  9. oracle 环境变量问题

    ORACLE_HOME   配置为oracle   ..\dbhome_1      配置错误可能导致监听起不来  (也有可能是在装client时可能会更改了之前变量的值) TNS_ADMIN     ...

  10. 关于LRU算法(转载)

      原文地址: http://flychao88.iteye.com/blog/1977653 http://blog.csdn.net/cjfeii/article/details/47259519 ...