#pragma hdrstop
#pragma hdrstop 表示预编译头文件到此为止,后面的头文件不进行预编译。BCB 可以
预编译头文件以加快链接的速度,但如果所有头文件都进行预编译又可能占太多磁盘空间,
所以使用这个选项排除一些头文件。
有时单元之间有依赖关系,比如单元A 依赖单元B,所以单元B 要先于单元A 编译。
你可以用#pragma startup 指定编译优先级,如果使用了#pragma package(smart_init) ,BCB
就会根据优先级的大小先后编译。

#pragma resource
#pragma resource "*.dfm"表示把*.dfm 文件中的资源加入工程。*.dfm 中包括窗体
外观的定义。

3.6.5,#pragma resource
#pragma resource "*.dfm"表示把*.dfm 文件中的资源加入工程。*.dfm 中包括窗体
外观的定义。

3.6.6,#pragma warning
#pragma warning( disable : 4507 34; once : 4385; error : 164 )
等价于:
#pragma warning(disable:4507 34) // 不显示4507 和34 号警告信息
#pragma warning(once:4385) // 4385 号警告信息仅报告一次
#pragma warning(error:164) // 把164 号警告信息作为一个错误。
同时这个pragma warning 也支持如下格式:
#pragma warning( push [ ,n ] )
#pragma warning( pop )
这里n 代表一个警告等级(1---4)。
#pragma warning( push )保存所有警告信息的现有的警告状态。
#pragma warning( push, n)保存所有警告信息的现有的警告状态,并且把全局警告
等级设定为n。
#pragma warning( pop )向栈中弹出最后一个警告信息,在入栈和出栈之间所作的
一切改动取消。例如:
#pragma warning( push )
#pragma warning( disable : 4705 )
#pragma warning( disable : 4706 )
#pragma warning( disable : 4707 )
//.......
#pragma warning( pop )
在这段代码的最后,重新保存所有的警告信息(包括4705,4706 和4707)。

3.6.8,#pragma pack
这里重点讨论内存对齐的问题和#pragma pack()的使用方法。
什么是内存对齐?
先看下面的结构:
struct TestStruct1
{
char c1;
short s;
char c2;
int i;
};
假设这个结构的成员在内存中是紧凑排列的,假设c1 的地址是0,那么s 的地址就应该
是1,c2 的地址就是3,i 的地址就是4。也就是c1 地址为00000000, s 地址为00000001, c2
地址为00000003, i 地址为00000004。
可是,我们在Visual C++6.0 中写一个简单的程序:
struct TestStruct1 a;
printf("c1 %p, s %p, c2 %p, i %p\n",
(unsigned int)(void*)&a.c1 - (unsigned int)(void*)&a,
(unsigned int)(void*)&a.s - (unsigned int)(void*)&a,
(unsigned int)(void*)&a.c2 - (unsigned int)(void*)&a,
(unsigned int)(void*)&a.i - (unsigned int)(void*)&a);
运行,输出:
c1 00000000, s 00000002, c2 00000004, i 00000008。
为什么会这样?这就是内存对齐而导致的问题。
3.6.8.1,为什么会有内存对齐?
字,双字,和四字在自然边界上不需要在内存中对齐。(对字,双字,和四字来说,自
然边界分别是偶数地址,可以被4 整除的地址,和可以被8 整除的地址。)无论如何,为了
提高程序的性能,数据结构(尤其是栈)应该尽可能地在自然边界上对齐。原因在于,为
了访问未对齐的内存,处理器需要作两次内存访问;然而,对齐的内存访问仅需要一次访
问。
一个字或双字操作数跨越了4 字节边界,或者一个四字操作数跨越了8 字节边界,被
认为是未对齐的,从而需要两次总线周期来访问内存。一个字起始地址是奇数但却没有跨
越字边界被认为是对齐的,能够在一个总线周期中被访问。某些操作双四字的指令需要内
存操作数在自然边界上对齐。如果操作数没有对齐,这些指令将会产生一个通用保护异常。
双四字的自然边界是能够被16 整除的地址。其他的操作双四字的指令允许未对齐的访问
(不会产生通用保护异常),然而,需要额外的内存总线周期来访问内存中未对齐的数据。
缺省情况下,编译器默认将结构、栈中的成员数据进行内存对齐。因此,上面的程序输
出就变成了:c1 00000000, s 00000002, c2 00000004, i 00000008。编译器将未对齐的成员向后
移,将每一个都成员对齐到自然边界上,从而也导致了整个结构的尺寸变大。尽管会牺牲
一点空间(成员之间有部分内存空闲),但提高了性能。也正是这个原因,我们不可以断言
sizeof(TestStruct1)的结果为8。在这个例子中,sizeof(TestStruct1)的结果为12。
3.6.8.2,如何避免内存对齐的影响
那么,能不能既达到提高性能的目的,又能节约一点空间呢?有一点小技巧可以使用。
比如我们可以将上面的结构改成:
struct TestStruct2
{
char c1;
char c2;
short s;
int i;
};
这样一来,每个成员都对齐在其自然边界上,从而避免了编译器自动对齐。在这个例
子中,sizeof(TestStruct2)的值为8。这个技巧有一个重要的作用,尤其是这个结构作为API
的一部分提供给第三方开发使用的时候。第三方开发者可能将编译器的默认对齐选项改变,
从而造成这个结构在你的发行的DLL 中使用某种对齐方式,而在第三方开发者哪里却使用
另外一种对齐方式。这将会导致重大问题。
比如,TestStruct1 结构,我们的DLL 使用默认对齐选项,对齐为
c1 00000000, s 00000002, c2 00000004, i 00000008,同时sizeof(TestStruct1)的值为12。
而第三方将对齐选项关闭,导致
c1 00000000, s 00000001, c2 00000003, i 00000004,同时sizeof(TestStruct1)的值为8。
除此之外我们还可以利用#pragma pack()来改变编译器的默认对齐方式(当然一般编译器
也提供了一些改变对齐方式的选项,这里不讨论)。
使用指令#pragma pack (n),编译器将按照n 个字节对齐。
使用指令#pragma pack (),编译器将取消自定义字节对齐方式。
在#pragma pack (n)和#pragma pack ()之间的代码按n 个字节对齐。
但是,成员对齐有一个重要的条件,即每个成员按自己的方式对齐.也就是说虽然指定了
按n 字节对齐,但并不是所有的成员都是以n 字节对齐。其对齐的规则是,每个成员按其类型
的对齐参数(通常是这个类型的大小)和指定对齐参数(这里是n 字节)中较小的一个对齐,即:
min( n, sizeof( item )) 。并且结构的长度必须为所用过的所有对齐参数的整数倍,不够就补空
字节。看如下例子:
#pragma pack(8)
struct TestStruct4
{
char a;
long b;
};
struct TestStruct5
{
char c;
TestStruct4 d;
long long e;
};
#pragma pack()
问题:
A),sizeof(TestStruct5) = ?
B), TestStruct5 的c 后面空了几个字节接着是d?
TestStruct4 中,成员a 是1 字节默认按1 字节对齐,指定对齐参数为8,这两个值中取1,a
按1 字节对齐;成员b 是4 个字节,默认是按4 字节对齐,这时就按4 字节对齐,所以
sizeof(TestStruct4)应该为8;
TestStruct5 中,c 和TestStruct4 中的a 一样,按1 字节对齐,而d 是个结构,它是8 个字节,它
按什么对齐呢?对于结构来说,它的默认对齐方式就是它的所有成员使用的对齐参数中最大
的一个, TestStruct4 的就是4.所以,成员d 就是按4 字节对齐.成员e 是8 个字节,它是默认按8
字节对齐,和指定的一样,所以它对到8 字节的边界上,这时,已经使用了12 个字节了,所以又添
加了4 个字节的空,从第16 个字节开始放置成员e.这时,长度为24,已经可以被8(成员e 按8
字节对齐)整除.这样,一共使用了24 个字节.内存布局如下(*表示空闲内存,1 表示使用内存。
单位为1byete):
a b
TestStruct4 的内存布局:1***,1111,
c TestStruct4.a TestStruct4.b d
TestStruct5 的内存布局: 1***, 1***, 1111, ****,11111111
这里有三点很重要:
首先,每个成员分别按自己的方式对齐,并能最小化长度。
其次,复杂类型(如结构)的默认对齐方式是它最长的成员的对齐方式,这样在成员是复杂
类型时,可以最小化长度。
然后,对齐后的长度必须是成员中最大的对齐参数的整数倍,这样在处理数组时可以保
证每一项都边界对齐。
补充一下,对于数组,比如:char a[3];它的对齐方式和分别写3 个char 是一样的.也就是说
它还是按1 个字节对齐.如果写: typedef char Array3[3];Array3 这种类型的对齐方式还是按1
个字节对齐,而不是按它的长度。
但是不论类型是什么,对齐的边界一定是1,2,4,8,16,32,64....中的一个。
另外,注意别的#pragma pack 的其他用法:
#pragma pack(push) //保存当前对其方式到packing stack
#pragma pack(push,n) 等效于
#pragma pack(push)
#pragma pack(n) //n=1,2,4,8,16 保存当前对齐方式,设置按n 字节对齐
#pragma pack(pop) //packing stack 出栈,并将对其方式设置为出栈的对齐方

#运算符
#也是预处理?是的,你可以这么认为。那怎么用它呢? 别急,先看下面例子:
#define SQR(x) printf("The square of x is %d.\n", ((x)*(x)));
如果这样使用宏:
SQR(8);
则输出为:
The square of x is 64.
注意到没有,引号中的字符x 被当作普通文本来处理,而不是被当作一个可以被替换的语言
符号。
假如你确实希望在字符串中包含宏参数,那我们就可以使用“#”,它可以把语言符号转
化为字符串。上面的例子改一改:
#define SQR(x) printf("The square of "#x" is %d.\n", ((x)*(x)));
再使用:
SQR(8);
则输出的是:
The square of 8 is 64.
很简单吧?相信你现在已经明白#号的使用方法了。
3.8,##预算符
和#运算符一样,##运算符可以用于宏函数的替换部分。这个运算符把两个语言符号组
合成单个语言符号。看例子:
#define XNAME(n) x ## n
如果这样使用宏:
XNAME(8)
则会被展开成这样:
x8
看明白了没?##就是个粘合剂,将前后两部分粘合起来。

#pragma hdrstop的更多相关文章

  1. pragma

    在所有的预处理指令中,#pragma指令可能是最复杂的了,它的作用是设定编译器的状态或者是指示编译器完成一些特定的动作.#pragma指令对每个 编译器给出了一个方法,在保持与C和C++语言完全兼容的 ...

  2. 【C语言】pragma

    ① #pragma comment (lib, "libgsl.a") 这是告诉编译器在编译形成的.obj文件和.exe文件中加一条信息,使得 链接器在链接库的时候要去找libgs ...

  3. #pragma 的使用

    #pragma 的使用 尽管 C 和 C++ 都已经有标准,但是几乎每个编译器 (广义,包含连接器等) 扩展一些 C/C++ 关键字. 合理地应用这些关键字,有时候能使我们的工作非常方便.下面随便说说 ...

  4. 汇总#pragma用法

    这几天忙着去复习了,但是心理总是不踏实,不到实验室里就觉得一天的生活变了个样,现在还是晚上来这里“搞起”吧,白天还是在复习准备考试.因为要开始学习freescale,准备明年的比赛了,觉得是时候开始搞 ...

  5. #pragma预处理指令讲解

    在所有的预处理指令中,#Pragma 指令可能是最复杂的了,它的作用是设定编译器的状态或者是指示编译器完成一些特定的动作.#pragma指令对每个编译器给出了一个方法,在保持与C和C++语言完全兼容的 ...

  6. pragma指令简介

    整理日:2015年3月12日 资源来来自己网络 在编写程序的时候,我们经常要用到#pragma指令来设定编译器的状态或者是指示编译器完成一些特定的动作. 下面介绍了一下该指令的一些常用参数,希望对大家 ...

  7. C语言#pragma预处理

    在所有的预处理指令中,#pragma 指令可能是最复杂的了,它的作用是设定编译器的状态或者是指示编译器完成一些特定的动作.#pragma 指令对每个编译器给出了一个方法,在保持与C 和C ++语言完全 ...

  8. C 語言中的編譯指示 (Pragma)

    編譯指示 #pragma 是用來告知編譯器某些特殊指示,例如不要輸出錯誤訊息,抑制警告訊息,或者加上記憶體漏洞檢查機制等.這些指示通常不是標準的 C 語言所具備的,而是各家編譯器廠商或開發者所制定的, ...

  9. 预处理指令中#Pragma

    在所有的预处理指令中,#Pragma 指令可能是最复杂的了,它的作用是设定编译器的状态或者是指示编译器完成一些特定的动作.#pragma指令对每个编译器给出了一个方法,在保持与C和C++语言完全兼容的 ...

随机推荐

  1. JS基础入门篇(四)—this的使用,模拟单选框,选项卡和复选框

    1.this的使用 this js中的关键字 js内部已经定义好了,可以不声明 直接使用 this的指向问题 1. 在函数外部使用 this指向的是window 2. 在函数内部使用 有名函数 直接调 ...

  2. arm可以干什么

    ARM开发可以控制各种电机.arm性能很强 ,内存更大, c语言当然可以.ARM是32位的,单片机是8位的,运行速度快很多,最关键的是可以跑操作系统.控制部分的内容ARM当然可以胜任,而且ARM的资源 ...

  3. 公司-IT-SanSan:SanSan

    ylbtech-公司-IT-SanSan:SanSan 毫不费力的组织.无缝简单.基于名片的联系人管理 SanSan是一个名片管理应用,为企业提供内部联系人管理和分享服务,此外该公司也是日本最大的.基 ...

  4. python深浅拷贝的理解和区分

    import copy a1 = ['s1','s2','s3'] #可变数据类型 a = [1,2,a1] b = a a1.append('s4') #浅拷贝 c = copy.copy(a) # ...

  5. QTP场景恢复函数

    public Function RecoveryFunction1(Object, Method, Arguments, retVal) Dim FileName ,TimeNow, ResPath ...

  6. 43.Word Break(看字符串是否由词典中的单词组成)

    Level:   Medium 题目描述: Given a non-empty string s and a dictionary wordDict containing a list of non- ...

  7. c# 自定义控件之 ComboBox

    winform 自带的 combobox 无法支持根据输入文本匹配列表中的项目,需要使用自定义控件. public class MyCombobox : ComboBox { //初始化数据项 pri ...

  8. git 查看文件修改

    查看某个文件的修改历史: 用git log -p filename. git blame filename是查看目前的每一行是哪个提交最后改动的. 查看某次提交修改列表: git show 版本号   ...

  9. 【目录】sql server 进阶篇系列

    随笔分类 - sql server 进阶篇系列 sql server 下载安装标记 摘要: SQL Server 2017 的各版本和支持的功能 https://docs.microsoft.com/ ...

  10. mySQL学习入门教程——4.内置函数

    四.内置函数: 包括了字符串函数.数值函数.日期函数.流程控制函数.其他函数(获取数据库信息)... 一.字符串函数[比较常用,需要掌握]1. concat(s1,s2,...,sn)   #把传入的 ...