% SLLE ALGORITHM (using K nearest neighbors)
%
% [Y] = lle(X,K,dmax,a)
%
% X = data as D x N matrix (D = dimensionality, N = #points)
% K = number of neighbors
% dmax = max embedding dimensionality
% Y = embedding as dmax x N matrix
% a=增量因子 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [Y] = lle(X,K,d,a) [D,N] = size(X);
fprintf(1,'SLLE running on %d points in %d dimensions\n',N,D); % STEP1: COMPUTE PAIRWISE DISTANCES & FIND NEIGHBORS
fprintf(1,'-->Finding %d nearest neighbours.\n',K); X2 = sum(X.^2,1);
distance = repmat(X2,N,1)+repmat(X2',1,N)-2*X'*X;
B=ones(N);
R=N/(d+1);
for i=1:d+1;
B(1+R*(i-1):R*i,1+R*(i-1):R*i)=zeros(R);
end;
distance1=distance+a*max(max(distance))*B; [sorted,index] = sort(distance1);
neighborhood = index(2:(1+K),:); % STEP2: SOLVE FOR RECONSTRUCTION WEIGHTS
fprintf(1,'-->Solving for reconstruction weights.\n'); if(K>D)
fprintf(1,' [note: K>D; regularization will be used]\n');
tol=1e-3; % regularlizer in case constrained fits are ill conditioned
else
tol=0;
end;
tol=1e-3;
W = zeros(K,N);
for ii=1:N
z = X(:,neighborhood(:,ii))-repmat(X(:,ii),1,K); % shift ith pt to origin
C = z'*z; % local covariance
C = C + eye(K,K)*tol*trace(C); % regularlization (K>D)
W(:,ii) = C\ones(K,1); % solve Cw=1
W(:,ii) = W(:,ii)/sum(W(:,ii)); % enforce sum(w)=1
end; % STEP 3: COMPUTE EMBEDDING FROM EIGENVECTS OF COST MATRIX M=(I-W)'(I-W)
fprintf(1,'-->Computing embedding.\n'); % M=eye(N,N); % use a sparse matrix with storage for 4KN nonzero elements
M = sparse(1:N,1:N,ones(1,N),N,N,4*K*N);
for ii=1:N
w = W(:,ii);
jj = neighborhood(:,ii);
M(ii,jj) = M(ii,jj) - w';
M(jj,ii) = M(jj,ii) - w;
M(jj,jj) = M(jj,jj) + w*w';
end; % CALCULATION OF EMBEDDING
options.disp = 0; options.isreal = 1; options.issym = 1;
[Y,eigenvals] = eigs(M,d+1,0,options);
Y = Y(:,1:d)'*sqrt(N); % bottom evect is [1,1,1,1...] with eval 0 fprintf(1,'Done.\n'); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % other possible regularizers for K>D
% C = C + tol*diag(diag(C)); % regularlization
% C = C + eye(K,K)*tol*trace(C)*K; % regularlization

  

测试用例(瑞士卷,貌似挺好吃的):

clear all,clc

N = 2000;

K = 12;
d = 3;
a=0; % Plot true manfold tt0 = (3*pi/2)*(1+2*[0:0.02:1]); hh = [0:0.125:1]*30; xx = (tt0.*cos(tt0))'*ones(size(hh)); yy = ones(size(tt0))'*hh; zz = (tt0.*sin(tt0))'*ones(size(hh)); cc = tt0'*ones(size(hh)); subplot(1,3,1); cla; surf(xx,yy,zz,cc); view([12 20]); grid off; axis off; hold on; lnx=-5*[3,3,3;3,-4,3]; lny=[0,0,0;32,0,0]; lnz=-5*[3,3,3;3,3,-3]; lnh=line(lnx,lny,lnz); set(lnh,'Color',[1,1,1],'LineWidth',2,'LineStyle','-','Clipping','off'); axis([-15,20,0,32,-15,15]); %generate sample data tt = (3*pi/2)*(1+2*rand(1,N)); height = 21*rand(1,N); X = [tt.*cos(tt); height; tt.*sin(tt)]; %scatter plot of sampled data subplot(1,3,2); cla; scatter3(X(1,:),X(2,:),X(3,:),12,tt,'+'); view([12 20]); grid off; axis off; hold on; lnh=line(lnx,lny,lnz); set(lnh,'Color',[1,1,1],'LineWidth',2,'LineStyle','-','Clipping','off'); axis([-15,20,0,32,-15,15]); drawnow; %run LLE algorithm Y=lle(X,K,d); %scatterplot of embedding subplot(1,3,3); cla; scatter(Y(1,:),Y(2,:),12,tt,'+'); grid off; set(gca,'XTick',[]); set(gca,'YTick',[]);

  

监督局部线性嵌入算法(SLLE算法)的更多相关文章

  1. LLE局部线性嵌入算法

    非线性降维 流形学习 算法思想有些类似于NLM,但是是进行的降维操作. [转载自] 局部线性嵌入(LLE)原理总结 - yukgwy60648的博客 - CSDN博客 https://blog.csd ...

  2. 局部线性嵌入(LLE)原理总结

    局部线性嵌入(Locally Linear Embedding,以下简称LLE)也是非常重要的降维方法.和传统的PCA,LDA等关注样本方差的降维方法相比,LLE关注于降维时保持样本局部的线性特征,由 ...

  3. 用scikit-learn研究局部线性嵌入(LLE)

    在局部线性嵌入(LLE)原理总结中,我们对流形学习中的局部线性嵌入(LLE)算法做了原理总结.这里我们就对scikit-learn中流形学习的一些算法做一个介绍,并着重对其中LLE算法的使用方法做一个 ...

  4. 机器学习降维方法概括, LASSO参数缩减、主成分分析PCA、小波分析、线性判别LDA、拉普拉斯映射、深度学习SparseAutoEncoder、矩阵奇异值分解SVD、LLE局部线性嵌入、Isomap等距映射

    机器学习降维方法概括   版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog.csdn.net/u014772862/article/details/52335970 最近 ...

  5. 吴裕雄 python 机器学习——局部线性嵌入LLE降维模型

    # -*- coding: utf-8 -*- import numpy as np import matplotlib.pyplot as plt from sklearn import datas ...

  6. 从NLP任务中文本向量的降维问题,引出LSH(Locality Sensitive Hash 局部敏感哈希)算法及其思想的讨论

    1. 引言 - 近似近邻搜索被提出所在的时代背景和挑战 0x1:从NN(Neighbor Search)说起 ANN的前身技术是NN(Neighbor Search),简单地说,最近邻检索就是根据数据 ...

  7. SVM-非线性支持向量机及SMO算法

    SVM-非线性支持向量机及SMO算法 如果您想体验更好的阅读:请戳这里littlefish.top 线性不可分情况 线性可分问题的支持向量机学习方法,对线性不可分训练数据是不适用的,为了满足函数间隔大 ...

  8. 一种最坏情况线性运行时间的选择算法 - The missing worst-case linear-time Select algorithm in CLRS.

    一种最坏情况线性运行时间的选择算法 - The missing worst-case linear-time Select algorithm in CLRS. 选择算法也就是求一个无序数组中第K大( ...

  9. SSE图像算法优化系列十九:一种局部Gamma校正对比度增强算法及其SSE优化。

    这是一篇2010年比较古老的文章了,是在QQ群里一位群友提到的,无聊下载看了下,其实也没有啥高深的理论,抽空实现了下,虽然不高大上,还是花了点时间和心思优化了代码,既然这样,就顺便分享下优化的思路和经 ...

随机推荐

  1. SAS中的Order By - Proc Sort

    SAS中的Order By - Proc Sort 1.排序proc sort proc sort在按数据集中某一个变量或几个变量的升序或降序将记录重新排列,并把结果保存在输出数据集中,如果不另外指定 ...

  2. Mac版-Jdk安装与环境配置

    下载安装 oracle官网下载,地址:https://www.oracle.com/technetwork/java/javase/downloads/index.html 下载好后,点击安装包,一直 ...

  3. Linux下的tar压缩解压命令

    tar  这五个是独立的命令,压缩解压都要用到其中一个,可以和别的命令连用但只能用其中一个. -c: 建立压缩档案-x:解压-t:查看内容-r:向压缩归档文件末尾追加文件-u:更新原压缩包中的文件 下 ...

  4. mybatis关联查询之一对多查询

    一对多,是最常见的一种设计.就是 A 表的一条记录,对应 B 表的多条记录,且 A 的主键作为 B 表的外键.这主要看以哪张表为中心,下面的测试数据中,从employee 表来看,一个员工对应一个部门 ...

  5. springCloud的使用08-----服务链路追踪(sleuth+zipkin)

    sleuth主要功能是在分布式系统中提供追踪解决方案,并且兼容支持了zipkin(提供了链路追踪的可视化功能) zipkin原理:在服务调用的请求和响应中加入ID,表明上下游请求的关系. 利用这些信息 ...

  6. document.location window.location

    document.location 和 window.location 取url的值的时候可以通用,但是 document是window的属性,所以不能直接用document.location =ur ...

  7. 转载:java集合类数据结构分析

    数组是 最常用的数据结构.数组的特点是长度固定,可以用下标索引,并且所有的元素的类型都是一致的.数组常用的场景有把:从数据库里读取雇员的信息存储为 EmployeeDetail[],把一个字符串转换并 ...

  8. Java集合框架是什么?说出一些集合框架的优点?

    每种编程语言中都有集合,最初的Java版本包含几种集合类:Vector.Stack.HashTable和Array. 随着集合的广泛使用,Java1.2提出了囊括所有集合接口.实现和算法的集合框架.在 ...

  9. 【记录】Idea "Cannot resolve symbol 'SpringBootApplication'" 错误&“找不到主类”错误

    初学,有一个Spring Boot的demo需要用Idea打开.我选择导入(Import Project选项)文件,出现如题错误,且yml文件格式也不正确显示(叶子). 后面细看目录,发现一个main ...

  10. 如何限制只有某些IP才能使用Tomcat Manager

    只有指定的主机或IP地址才可以访问部署在Tomcat下的应用.Tomcat提供了两个参数供你配置:RemoteHostValve 和RemoteAddrValve,前者用于限制主机名,后者用于限制IP ...