题目链接:LightOJ - 1248

Description

Given a dice with n sides, you have to find the expected number of times you have to throw that dice to see all its faces at least once. Assume that the dice is fair, that means when you throw the dice, the probability of occurring any face is equal.

For example, for a fair two sided coin, the result is 3. Because when you first throw the coin, you will definitely see a new face. If you throw the coin again, the chance of getting the opposite side is 0.5, and the chance of getting the same side is 0.5. So, the result is

\(1 + (1 + 0.5 * (1 + 0.5 * ...))\)

\(= 2 + 0.5 + 0.5^2 + 0.5^3 + ...\)

\(= 2 + 1 = 3\)

Input

Input starts with an integer \(T (≤ 100)\), denoting the number of test cases.

Each case starts with a line containing an integer \(n (1 ≤ n ≤ 10^5)\).

Output

For each case, print the case number and the expected number of times you have to throw the dice to see all its faces at least once. Errors less than \(10^{-6}\) will be ignored.

Sample Input

5
1
2
3
6
100

Sample Output

Case 1: 1
Case 2: 3
Case 3: 5.5
Case 4: 14.7
Case 5: 518.7377517640

Solution

题意

给定一个 \(n\) 面的骰子,每个面出现的概率相同,现在要所有的面都至少出现一次,求投掷次数的期望。

思路

期望DP

期望DP一般是倒推的。

设 \(dp[i]\) 为已经出现了 \(i\) 个面,还需要投掷次数的期望值。

那么每次投掷只有两种情况:出现已经出现过的面、出现未出现的面。前者概率为 \(\frac{i}{n}\),后者概率为 \(\frac{n - i}{n}\)。

则状态转移方程为 \(dp[i] = (dp[i] + 1) * \frac{i}{n} + (dp[i + 1] + 1) * \frac{n - i}{n}\)

化简得 \(dp[i] = dp[i + 1] + \frac{n}{n - i}\)

\(dp[n] = 0\),倒推即可。

#include <bits/stdc++.h>
using namespace std;
const int maxn = 1e5 + 10; double dp[maxn]; int main() {
int T;
scanf("%d", &T);
int kase = 0;
while(T--) {
memset(dp, 0, sizeof(dp));
int n;
scanf("%d", &n);
dp[n] = 0;
for(int i = n - 1; i >= 0; --i) {
dp[i] = dp[i + 1] + 1.0 * n / (n - i);
}
printf("Case %d: %.10lf\n", ++kase, dp[0]);
}
return 0;
}

其实是满足几何分布的。

第一个出现的面可以是 \(1, 2, 3, ..., n\),有 \(n\) 个。

如果第一个出现的面是 \(1\),那么第二个出现的面可以是 \(2, 3, ..., n\),有 \(n - 1\) 个。

...

第一个面第一次出现的概率为 \(p_1 = \frac{n}{n}\)

第二个面第一次出现的概率为 \(p_2 = \frac{n - 1}{n}\)

第三个面第一次出现的概率为 \(p_3 = \frac{n - 2}{n}\)

...

第 \(i\) 个面第一次出现的概率为 \(p_i = \frac{n - i + 1}{n}\)

几何分布的期望 \(E(X) = \frac{1}{p}\)

所以所有面至少出现一次的期望为 \(\sum_{i=1}^n \frac{1}{p_i} = \sum_{i=1}^n \frac{n}{n - i + 1}\)。

注:几何分布指在 \(n\) 次伯努利试验中,试验 \(k\) 次才得到第一次成功的机率。

#include <bits/stdc++.h>
using namespace std; int main() {
int T;
scanf("%d", &T);
int kase = 0;
while(T--) {
int n;
scanf("%d", &n);
double ans = 0.0;
for(int i = 1; i <= n; ++i) {
ans += n * 1.0 / i;
}
printf("Case %d: %.10lf\n", ++kase, ans);
}
return 0;
}

Reference

LightOJ - 1248 Dice (III) (概率期望+几何分布)

LightOJ 1248 Dice (III) (期望DP / 几何分布)的更多相关文章

  1. LightOJ - 1248 Dice (III) —— 期望

    题目链接:https://vjudge.net/problem/LightOJ-1248 1248 - Dice (III)    PDF (English) Statistics Forum Tim ...

  2. LightOj 1248 - Dice (III)(几何分布+期望)

    题目链接:http://lightoj.com/volume_showproblem.php?problem=1248 题意:有一个 n 面的骰子,问至少看到所有的面一次的所需 掷骰子 的 次数的期望 ...

  3. LightOJ 1248 Dice (III) (水题,期望DP)

    题意:给出一个n面的色子,问看到每个面的投掷次数期望是多少. 析:这个题很水啊,就是他解释样例解释的太...我鄙视他,,,,, dp[i] 表示 已经看到 i 面的期望是多少,然后两种选择一种是看到新 ...

  4. 【非原创】LightOj 1248 - Dice (III)【几何分布+期望】

    学习博客:戳这里 题意:有一个 n 面的骰子,问至少看到所有的面一次的所需 掷骰子 的 次数的期望: 第一个面第一次出现的概率是p1 n/n; 第二个面第一次出现的概率是p2 (n-1)/n; 第三个 ...

  5. LightOJ 1248 Dice (III) 概率

    Description Given a dice with n sides, you have to find the expected number of times you have to thr ...

  6. LightOJ 1248 Dice (III)

    期望,$dp$. 设$dp[i]$表示当前已经出现过$i$个数字的期望次数.在这种状态下,如果再投一次,会出现两种可能,即出现了$i+1$个数字以及还是$i$个数字. 因此 $dp[i]=dp[i]* ...

  7. 1248 - Dice (III)

    1248 - Dice (III)   PDF (English) Statistics Forum Time Limit: 1 second(s) Memory Limit: 32 MB Given ...

  8. [LOJ 1248] Dice (III)

    G - Dice (III) Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%lld & %llu Descri ...

  9. lightoj 1248-G - Dice (III) (概率dp)

    题意:给你n个面的骰子,问扔出所有面的期望次数. 虽然这题挺简单的但还是要提一下.这题题目给出了解法. E(m)表示得到m个不同面的期望次数. E(m+1)=[((n-m)/n)*E(m)+1]+(m ...

随机推荐

  1. MongoDB简单认识

    MongoDB 为何物 NoSQL 泛指非关系型数据库,该词是关系型数据库(即 SQL)的相对称呼.MongoDB 是非关系型数据库中较为人熟知的一种. 它拥有很多优秀特性,例如高性能.高可用.支持丰 ...

  2. MVC:页面提交JQ动态生成的输入框的值得解决方案:

    一,动态生成JS写法 <script type="text/javascript"> , , , ); function Additional() { var num ...

  3. centos7 部署镜像仓库 harbor步骤详解

    一.基础设置  1.1 安装vim.wget yum install -y vim wget  1.2 卸载home.扩大root 如果考虑镜像仓库是给研发团队使用,需要配置较大容量的,因为cento ...

  4. vue证明题五,组件传值与绑定

    上文中写了一个input组件,该组件需要复用,但是并不是每个组件都相同的 比如我定义了一个组件,是个矿泉水瓶子,这个瓶子分为大中小三个号,定义了三种瓶子的容积,定义了必须有瓶盖,瓶口,瓶子质地 但是瓶 ...

  5. sigmoid 和 soft-max总结

    1)sigmoid函数(也叫逻辑斯谛函数):  引用wiki百科的定义: A logistic function or logistic curve is a common “S” shape (si ...

  6. 【串线篇】SpringMvc视图解析

    一. 请求处理方法执行完成后,最终返回一个 ModelAndView 对象.对于那些返回 String,View 或 ModeMap 等类型的处理方法,Spring MVC 也会在内部将它们装配成一个 ...

  7. Oracle 19C的下载和安装部署

    1.官网下载zip包. 2.解压到/usr/local/oracle 目录. 3.创建用户和用户组 /usr/sbin/useradd -u oracle //用户组oracle /usr/sbin/ ...

  8. 字符串操作——C语言实现

    代码如下: #include <stdio.h> #include <stdlib.h> #include <string.h> #include <asse ...

  9. SVN更新提示内容被锁定

    SVN更新提示内容被锁定   SVN要管理好,并且及时将最新的更新内容上传到SVN上. 在我使用从SVN上更新内容到本地时,总是提示“**********已经锁定”.如果出现这种情况,选择SVN选项“ ...

  10. Mac上无法使用蓝牙时的7个修复程序

    蓝牙是一个很普遍的技术,除非它出现问题,你才会发现它.例如,你听歌很顺利时,直到AirPods突然断连.大多数时候,这是一个相对容易的修复,但有时可能会有些棘手. https://www.macdow ...