USACO2018 DEC (Gold) (dp,容斥+哈希,最短路)
\(T1\)
解题思路
傻逼\(dp\)。。直接\(ST\)表处理最大值\(O(n^2)\)艹过了。
代码
#include<bits/stdc++.h>
using namespace std;
const int N=10005;
inline int rd(){
int x=0,f=1; char ch=getchar();
while(!isdigit(ch)) f=ch=='-'?0:1,ch=getchar();
while(isdigit(ch)) x=(x<<1)+(x<<3)+ch-'0',ch=getchar();
return f?x:-x;
}
int n,k,a[N],f[N],Max[N][15],lg[N];
int query(int l,int r){
int t=lg[r-l+1];
return max(Max[l][t],Max[r-(1<<t)+1][t]);
}
int main(){
n=rd(),k=rd();
for(int i=1;i<=n;i++) a[i]=rd(),Max[i][0]=a[i];
for(int i=2;i<=n;i++) lg[i]=lg[i>>1]+1;
for(int j=1;(1<<j)<=n;j++)
for(int i=1;i+(1<<j)-1<=n;i++)
Max[i][j]=max(Max[i][j-1],Max[i+(1<<(j-1))][j-1]);
for(int i=1;i<=n;i++)
for(int j=max(0,i-k);j<i;j++)
f[i]=max(f[i],f[j]+query(j+1,i)*(i-j));
printf("%d\n",f[n]);
return 0;
}
\(T2\)
解题思路
傻逼容斥。。用的哈希存状态,刚开始用的取摸哈希,发现冲突率太高,\(WA\)了好几次用自然溢出过了。
代码
#include<bits/stdc++.h>
using namespace std;
const int N=50005;
const int base=66662333;
const int P=131;
typedef long long LL;
typedef unsigned long long ull;
inline int rd(){
int x=0,f=1; char ch=getchar();
while(!isdigit(ch)) f=ch=='-'?0:1,ch=getchar();
while(isdigit(ch)) x=(x<<1)+(x<<3)+ch-'0',ch=getchar();
return f?x:-x;
}
int n,a[N][7],tp[34];
LL ans;
ull hsh[N][34];
map<ull,int> mp;
void prework(int x){
for(int i=1;i<(1<<5);i++){
int num=0;
for(int j=1;j<=5;j++) if((1<<(j-1))&i)
num++,hsh[x][i]=(hsh[x][i]+a[x][j])*base+P;
mp[hsh[x][i]]++;
}
}
inline void calc(int x){
for(int i=1;i<(1<<5);i++){
int num=mp[hsh[x][i]];
if(num==1) continue;
mp[hsh[x][i]]=1;
ans+=1ll*tp[i]*num*(num-1)/2;
}
}
int main(){
n=rd(); ans=1ll*n*(n-1)/2;
for(int i=1;i<=n;i++){
for(int j=1;j<=5;j++)
a[i][j]=rd();
sort(a[i]+1,a[i]+6);
prework(i);
}
for(int i=1;i<(1<<5);i++)
tp[i]=(__builtin_popcount(i)&1)?(-1):1;
for(int i=1;i<=n;i++) calc(i);
printf("%lld\n",ans);
return 0;
}
\(T3\)
解题思路
似乎想了好一会,后来发现可以类似分层图最短路做,把美味值取负数做为点权,设\(dis(i)(0)\)表示没有到过干草棚最短路,\(dis(i)(1)\)表示到过干草棚最短路,转移时随便讨论一下。然后最后如果\(dis(i)(1)<=dis(i)(0)\),说明可行。
代码
#include<bits/stdc++.h>
using namespace std;
const int N=100005;
const int M=200005;
inline int rd(){
int x=0,f=1; char ch=getchar();
while(!isdigit(ch)) f=ch=='-'?0:1,ch=getchar();
while(isdigit(ch)) x=(x<<1)+(x<<3)+ch-'0',ch=getchar();
return f?x:-x;
}
int n,m,K,head[N],cnt,to[M<<1],nxt[M<<1],val[M<<1];
int dis[N][3],w[N];
bool vis[N];
queue<int> Q;
inline void add(int bg,int ed,int w){
to[++cnt]=ed,nxt[cnt]=head[bg],head[bg]=cnt,val[cnt]=w;
}
void spfa(){
memset(dis,0x3f,sizeof(dis));
dis[n][0]=0; Q.push(n);
while(Q.size()){
int x=Q.front(); Q.pop(); vis[x]=0;
for(int i=head[x];i;i=nxt[i]){
int u=to[i];
if(dis[x][0]+val[i]<dis[u][0]){
dis[u][0]=dis[x][0]+val[i];
if(!vis[u]) Q.push(u),vis[u]=1;
}
if(w[u] && dis[x][0]+val[i]-w[u]<dis[u][1]){
dis[u][1]=dis[x][0]+val[i]-w[u];
if(!vis[u]) Q.push(u),vis[u]=1;
}
if(dis[x][1]+val[i]<dis[u][1]){
dis[u][1]=dis[x][1]+val[i];
if(!vis[u]) Q.push(u),vis[u]=1;
}
}
}
}
int main(){
n=rd(),m=rd(),K=rd(); int x,y,z;
for(int i=1;i<=m;i++){
x=rd(),y=rd(),z=rd();
add(x,y,z),add(y,x,z);
}
for(int i=1;i<=K;i++) x=rd(),w[x]=max(w[x],rd());
if(w[n]) {for(int i=1;i<n;i++) puts("1"); return 0;}
spfa();
for(int i=1;i<n;i++){
if(dis[i][0]>=dis[i][1]) puts("1");
else puts("0");
}
return 0;
}
USACO2018 DEC (Gold) (dp,容斥+哈希,最短路)的更多相关文章
- bzoj 3622 DP + 容斥
LINK 题意:给出n,k,有a,b两种值,a和b间互相配对,求$a>b$的配对组数-b>a的配对组数恰好等于k的情况有多少种. 思路:粗看会想这是道容斥组合题,但关键在于如何得到每个a[ ...
- 【BZOJ 4665】 4665: 小w的喜糖 (DP+容斥)
4665: 小w的喜糖 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 94 Solved: 53 Description 废话不多说,反正小w要发喜 ...
- [Luogu P1450] [HAOI2008]硬币购物 背包DP+容斥
题面 传送门:https://www.luogu.org/problemnew/show/P1450 Solution 这是一道很有意思的在背包里面做容斥的题目. 首先,我们可以很轻松地想到暴力做背包 ...
- [LOJ#3119][Luogu5405][CTS2019]氪金手游(DP+容斥)
先考虑外向树的做法,显然一个点在其子树内第一个出现的概率等于它的权值除以它子树的权值和.于是f[i][j]表示i的子树的权值和为j时,i子树内所有数的相互顺序都满足条件的概率,转移直接做一个背包卷积即 ...
- HDU 5838 (状压DP+容斥)
Problem Mountain 题目大意 给定一张n*m的地图,由 . 和 X 组成.要求给每个点一个1~n*m的数字(每个点不同),使得编号为X的点小于其周围的点,编号为.的点至少大于一个其周围的 ...
- Codeforces 611C New Year and Domino DP+容斥
"#"代表不能放骨牌的地方,"."是可以放 500*500的矩阵,q次询问 开两个dp数组,a,b,a统计横着放的方案数,b表示竖着放,然后询问时O(1)的,容 ...
- [BZOJ 1042] [HAOI2008] 硬币购物 【DP + 容斥】
题目链接:BZOJ - 1042 题目分析 首先 Orz Hzwer ,代码题解都是看的他的 blog. 这道题首先使用DP预处理,先求出,在不考虑每种硬币个数的限制的情况下,每个钱数有多少种拼凑方案 ...
- codeforces 342D Xenia and Dominoes(状压dp+容斥)
转载请注明出处: http://www.cnblogs.com/fraud/ ——by fraud D. Xenia and Dominoes Xenia likes puzzles ...
- CF285E Positions in Permutations(dp+容斥)
题意,给定n,k,求有多少排列是的 | p[i]-i |=1 的数量为k. Solution 直接dp会有很大的后效性. 所以我们考虑固定k个数字使得它们是合法的,所以我们设dp[i][j][0/1] ...
随机推荐
- Insertion Sort List(单链表插入排序)
来源:https://leetcode.com/problems/insertion-sort-list Sort a linked list using insertion sort. 方法: 1. ...
- javascript中的继承-寄生组合式继承
前文说过,组合继承是javascript最常用的继承模式,不过,它也有自己的不足:组合继承无论在什么情况下,都会调用两次父类构造函数,一次是在创建子类原型的时候,另一次是在子类构造函数内部.子类最终会 ...
- Sequential game
Sequential game Problem Description Sequential detector is a very important device in Hardware exper ...
- 网络流 ISAP算法
网络流问题: 我自己理解,在流网络中,在不违背容量限制的条件下,解决各种从源点到汇点的问题. ISAP算法概念: 据说不会有卡ISAP时间的题目---时间复杂度O(E^2*V) 首先原理都是基于不断寻 ...
- 如何通过PHP将excel的数据导入MySQL中
在开发PHP程序时,很多时候我们会有将数据批量导入数据库的需求,如学生信息批量添加到数据库中,而事先用excel编排好,对excel实行操作,便是我们比较常用的选择方式. 在对excel的操作中,ph ...
- shell学习笔记2---执行Shell脚本(多种方法)
在新进程中运行 Shell 脚本 1) 将 Shell 脚本作为程序运行 切换到脚本所在位置(还要给脚本加上可执行权限) [mozhiyan@localhost demo]$ ./test.sh #执 ...
- tensorflow学习笔记六----------神经网络
使用mnist数据集进行神经网络的构建 import numpy as np import tensorflow as tf import matplotlib.pyplot as plt from ...
- 在django中使用循环与条件语言
{% if not Article_type_id %} <li class="active"><a href="/">全部</a ...
- vue图片不存在时加载默认图片
在文件中的img那里添加:οnerrοr="errorImg01",然后设置errorImg01的路径如果直接写成 errorImg01: ('../../assets/image ...
- [七月挑选]使用hexo建立主题,并发布到github
title: 使用hexo建立主题,并发布到github 根据hexo官网的概述和hexo官网的建站,搭建最开始的hexo博客. 1.环境预先安装好node.js和git 2.npm安装hexo: $ ...