Dancing Stars on Me

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)
Total Submission(s): 223    Accepted Submission(s): 151

Problem Description
The sky was brushed clean by the wind and the stars were cold in a black sky. What a wonderful night. You observed that, sometimes the stars can form a regular polygon in the sky if we connect them properly. You want to record these moments by your smart camera. Of course, you cannot stay awake all night for capturing. So you decide to write a program running on the smart camera to check whether the stars can form a regular polygon and capture these moments automatically.

Formally, a regular polygon is a convex polygon whose angles are all equal and all its sides have the same length. The area of a regular polygon must be nonzero. We say the stars can form a regular polygon if they are exactly the vertices of some regular polygon. To simplify the problem, we project the sky to a two-dimensional plane here, and you just need to check whether the stars can form a regular polygon in this plane.

 
Input
The first line contains a integer T indicating the total number of test cases. Each test case begins with an integer n, denoting the number of stars in the sky. Following n lines, each contains 2 integers xi,yi, describe the coordinates of n stars.

1≤T≤300
3≤n≤100
−10000≤xi,yi≤10000
All coordinates are distinct.

 
Output
For each test case, please output "`YES`" if the stars can form a regular polygon. Otherwise, output "`NO`" (both without quotes).
 
Sample Input
3
3
0 0
1 1
1 0
4
0 0
0 1
1 0
1 1
5
0 0
0 1
0 2
2 2
2 0
 
Sample Output
NO
YES
NO
 
Source
 题意:给你n个整数点,问这n个点能否组成正多边形。因为都是整数点,所以组成的正多边形只能是正方形。所以只需判断是否为正方形就好啦
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring> using namespace std; #define N 25 int n; struct node
{
int x, y;
}P[N]; int slove(int i, int j, int k, int q) // 判断是否为正四边形
{
if(i == j || i == k) // 不能有重点
return false;
if(i == q || j == k)
return false;
if(j == q || k == q)
return false; int w = 0, num[8];
memset(num, 0, sizeof(num)); num[w++] = (P[i].x-P[j].x)*(P[i].x-P[j].x)+(P[i].y-P[j].y)*(P[i].y-P[j].y);
num[w++] = (P[i].x-P[k].x)*(P[i].x-P[k].x)+(P[i].y-P[k].y)*(P[i].y-P[k].y);
num[w++] = (P[i].x-P[q].x)*(P[i].x-P[q].x)+(P[i].y-P[q].y)*(P[i].y-P[q].y);
num[w++] = (P[j].x-P[k].x)*(P[j].x-P[k].x)+(P[j].y-P[k].y)*(P[j].y-P[k].y);
num[w++] = (P[j].x-P[q].x)*(P[j].x-P[q].x)+(P[j].y-P[q].y)*(P[j].y-P[q].y);
num[w++] = (P[q].x-P[k].x)*(P[q].x-P[k].x)+(P[q].y-P[k].y)*(P[q].y-P[k].y); sort(num, num+w); w = unique(num, num+w) - num; if(w != 2) // 只能有两种不相同的边
return false;
return true;
} int main()
{
int t;
scanf("%d\n", &t);
while(t--)
{
scanf("%d", &n); int ans = 0; for(int i = 1; i <= n; i++)
scanf("%d%d", &P[i].x, &P[i].y);
if(n != 4)
{
printf("NO\n");
continue;
} for(int i = 1; i <= n; i++)
for(int j = i+1; j <= n; j++)
for(int k = j+1; k <= n; k++)
for(int q = k+1; q <= n; q++)
if(slove(i, j, k, q))
ans++;
if(ans != 0)
printf("YES\n");
else
printf("NO\n");
}
return 0;
}

  

Dancing Stars on Me的更多相关文章

  1. 2015ACM/ICPC亚洲区长春站 G hdu 5533 Dancing Stars on Me

    Dancing Stars on Me Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Ot ...

  2. hdu 5533 Dancing Stars on Me 水题

    Dancing Stars on Me Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.p ...

  3. hdu 5533 Dancing Stars on Me

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5533 Dancing Stars on Me Time Limit: 2000/1000 MS (Ja ...

  4. Dancing Stars on Me(判断正多边形)

    Dancing Stars on Me Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Ot ...

  5. HDU 5533/ 2015长春区域 G.Dancing Stars on Me 暴力

    Dancing Stars on Me Problem Description The sky was brushed clean by the wind and the stars were col ...

  6. hdu 5533 Dancing Stars on Me(数学,水)

    Problem Description The sky was brushed clean by the wind and the stars were cold in a black sky. Wh ...

  7. 【2015 ICPC亚洲区域赛长春站 G】Dancing Stars on Me(几何+暴力)

    Problem Description The sky was brushed clean by the wind and the stars were cold in a black sky. Wh ...

  8. Dancing Stars on Me---hdu5533(判断是否为正多边形)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5533 题意:平面图中 有n个点给你每个点的坐标,判断是否能通过某种连线使得这些点所组成的n边形为 正n ...

  9. 【HDOJ5533】Dancing Stars on Me(计算几何)

    题意:给定二维平面上的n个整点,问它们是否都在正n边形的定点上 n<=100,abs(x[i]),abs(y[i])<=1e4 思路:队友做的,抱大腿 可以发现只有n=4时顶点有可能都是整 ...

随机推荐

  1. 九、Zabbix-触发器

    1.触发器是用来触发报警,或这其他动作的机制,它需要依赖监控项,以监控项为基础创建 3.创建触发器 (1)配置—>模板—>需要调整的模板—>触发器 (2)编辑触发器

  2. 初涉Java

    一.学习内容总结 1.程序入口 但如果类的定义使用了public class声明,那么文件名必须与类名保持一致,使用了class定义的类,文件名称可以和类名称不同. 2.输出语句 3.print与pr ...

  3. [转帖]JVM内存结构 VS Java内存模型 VS Java对象模型

    JVM内存结构 VS Java内存模型 VS Java对象模型 https://www.hollischuang.com/archives/2509 Java作为一种面向对象的,跨平台语言,其对象.内 ...

  4. python学习第五十三天configParser模块的使用

    configParser 模块用于生成和修改常见配置文档,python 3.x为configParser,配置软件的常见配置格式 模块的用法 import configparser config=co ...

  5. 连连看(简单搜索)bfs

    连连看Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submis ...

  6. 【 React -- 2/100 】使用React实现评论功能

    React| 组件化 | 递归 | 生成唯一ID 需要探究一下 .find() 和 findIndex() 的区别 import React from 'react' import './commen ...

  7. Servlet实现Cookie自动登录,并显示保存的用户信息

    转自:https://blog.csdn.net/qq_29612963/article/details/51100565

  8. 看CLRS 对B树的浅显理解

    定义及特点: 每个结点有n个关键字和n+1个指向子结点的指针,即有n+1个孩子结点. n个关键字按非递减的顺序存储. 最小度数t>=2,除了根结点的所有内部结点(非叶结点)的孩子数>=t且 ...

  9. STM32 总线

    AHB,是Advanced High performance Bus的缩写,译作高级高性能总线,这是一种“系统总线”.AHB主要用于高性能模块(如CPU.DMA和DSP等)之间的连接.AHB 系统由主 ...

  10. moc_XXXX.o:(.data.rel.ro._ZTI12CalculatorUI[_ZTI12CalculatorUI]+0x10): undefined reference to `typeinfo for QWidget' collect2: error: ld returned 1 exit status make: *** [Makefile:144: myCalculator]

    main.cpp:(.text.startup+0x22): undefined reference to `QApplication::QApplication(int&, char**, ...