Given a non-empty binary search tree and a target value, find k values in the BST that are closest to the target.

Note:

  • Given target value is a floating point.
  • You may assume k is always valid, that is: k≤ total nodes.
  • You are guaranteed to have only one unique set of k values in the BST that are closest to the target.

Example:

Input: root = [4,2,5,1,3], target = 3.714286, and k = 2

    4
/ \
2 5
/ \
1 3 Output: [4,3]

Follow up:
Assume that the BST is balanced, could you solve it in less than O(n) runtime (where n = total nodes)?

这道题是之前那道 Closest Binary Search Tree Value 的拓展,那道题只让找出离目标值最近的一个节点值,而这道题让找出离目标值最近的k个节点值,难度瞬间增加了不少,博主最先想到的方法是用中序遍历将所有节点值存入到一个一维数组中,由于二分搜索树的性质,这个一维数组是有序的,然后再在有序数组中需要和目标值最近的k个值就简单的多,参见代码如下:

解法一:

class Solution {
public:
vector<int> closestKValues(TreeNode* root, double target, int k) {
vector<int> res, v;
inorder(root, v);
int idx = ;
double diff = numeric_limits<double>::max();
for (int i = ; i < v.size(); ++i) {
if (diff >= abs(target - v[i])) {
diff = abs(target - v[i]);
idx = i;
}
}
int left = idx - , right = idx + ;
for (int i = ; i < k; ++i) {
res.push_back(v[idx]);
if (left >= && right < v.size()) {
if (abs(v[left] - target) > abs(v[right] - target)) {
idx = right;
++right;
} else {
idx = left;
--left;
}
} else if (left >= ) {
idx = left;
--left;
} else if (right < v.size()) {
idx = right;
++right;
}
}
return res;
}
void inorder(TreeNode *root, vector<int> &v) {
if (!root) return;
inorder(root->left, v);
v.push_back(root->val);
inorder(root->right, v);
}
};

还有一种解法是直接在中序遍历的过程中完成比较,当遍历到一个节点时,如果此时结果数组不到k个,直接将此节点值加入结果 res 中,如果该节点值和目标值的差值的绝对值小于结果 res 的首元素和目标值差值的绝对值,说明当前值更靠近目标值,则将首元素删除,末尾加上当前节点值,反之的话说明当前值比结果 res 中所有的值都更偏离目标值,由于中序遍历的特性,之后的值会更加的遍历,所以此时直接返回最终结果即可,参见代码如下:

解法二:

class Solution {
public:
vector<int> closestKValues(TreeNode* root, double target, int k) {
vector<int> res;
inorder(root, target, k, res);
return res;
}
void inorder(TreeNode *root, double target, int k, vector<int> &res) {
if (!root) return;
inorder(root->left, target, k, res);
if (res.size() < k) res.push_back(root->val);
else if (abs(root->val - target) < abs(res[] - target)) {
res.erase(res.begin());
res.push_back(root->val);
} else return;
inorder(root->right, target, k, res);
}
};

下面这种方法是上面那种方法的迭代写法,原理一模一样,参见代码如下:

解法三:

class Solution {
public:
vector<int> closestKValues(TreeNode* root, double target, int k) {
vector<int> res;
stack<TreeNode*> s;
TreeNode *p = root;
while (p || !s.empty()) {
while (p) {
s.push(p);
p = p->left;
}
p = s.top(); s.pop();
if (res.size() < k) res.push_back(p->val);
else if (abs(p->val - target) < abs(res[] - target)) {
res.erase(res.begin());
res.push_back(p->val);
} else break;
p = p->right;
}
return res;
}
};

在来看一种利用最大堆来解题的方法,堆里保存的一个差值 diff 和节点值的 pair,中序遍历二叉树(也可以用其他遍历方法),然后对于每个节点值都计算一下和目标值之差的绝对值,由于最大堆的性质,diff 大的自动拍到最前面,维护k个 pair,如果超过了k个,就把堆前面大的 pair 删掉,最后留下的k个 pair,将 pair 中的节点值取出存入结果 res 中返回即可,参见代码如下:

解法四:

class Solution {
public:
vector<int> closestKValues(TreeNode* root, double target, int k) {
vector<int> res;
priority_queue<pair<double, int>> q;
inorder(root, target, k, q);
while (!q.empty()) {
res.push_back(q.top().second);
q.pop();
}
return res;
}
void inorder(TreeNode *root, double target, int k, priority_queue<pair<double, int>> &q) {
if (!root) return;
inorder(root->left, target, k, q);
q.push({abs(root->val - target), root->val});
if (q.size() > k) q.pop();
inorder(root->right, target, k, q);
}
};

下面的这种方法用了两个栈,pre 和 suc,其中 pre 存小于目标值的数,suc 存大于目标值的数,开始初始化 pre 和 suc 的时候,要分别将最接近目标值的稍小值和稍大值压入 pre 和 suc,然后循环k次,每次比较 pre 和 suc 的栈顶元素,看谁更接近目标值,将其存入结果 res 中,然后更新取出元素的栈,依次类推直至取完k个数返回即可,参见代码如下:

解法五:

class Solution {
public:
vector<int> closestKValues(TreeNode* root, double target, int k) {
vector<int> res;
stack<TreeNode*> pre, suc;
while (root) {
if (root->val <= target) {
pre.push(root);
root = root->right;
} else {
suc.push(root);
root = root->left;
}
}
while (k-- > ) {
if (suc.empty() || !pre.empty() && target - pre.top()->val < suc.top()->val - target) {
res.push_back(pre.top()->val);
getPredecessor(pre);
} else {
res.push_back(suc.top()->val);
getSuccessor(suc);
}
}
return res;
}
void getPredecessor(stack<TreeNode*> &pre) {
TreeNode *t = pre.top(); pre.pop();
if (t->left) {
pre.push(t->left);
while (pre.top()->right) pre.push(pre.top()->right);
}
}
void getSuccessor(stack<TreeNode*> &suc) {
TreeNode *t = suc.top(); suc.pop();
if (t->right) {
suc.push(t->right);
while (suc.top()->left) suc.push(suc.top()->left);
}
}
};

Github 同步地址:

https://github.com/grandyang/leetcode/issues/272

类似题目:

Closest Binary Search Tree Value

Binary Tree Inorder Traversal

参考资料:

https://leetcode.com/problems/closest-binary-search-tree-value-ii/

https://leetcode.com/problems/closest-binary-search-tree-value-ii/discuss/70515/Java-in-order-traversal-1ms-solution

https://leetcode.com/problems/closest-binary-search-tree-value-ii/discuss/70511/AC-clean-Java-solution-using-two-stacks

https://leetcode.com/problems/closest-binary-search-tree-value-ii/discuss/70549/Clear-Java-Solution-with-one-stack-one-linkedlist

https://leetcode.com/problems/closest-binary-search-tree-value-ii/discuss/70503/O(logN)-Java-Solution-with-two-stacks-following-hint

LeetCode All in One 题目讲解汇总(持续更新中...)

[LeetCode] 272. Closest Binary Search Tree Value II 最近的二分搜索树的值之二的更多相关文章

  1. [LeetCode] Closest Binary Search Tree Value II 最近的二分搜索树的值之二

    Given a non-empty binary search tree and a target value, find k values in the BST that are closest t ...

  2. [LeetCode] 272. Closest Binary Search Tree Value II 最近的二叉搜索树的值 II

    Given a non-empty binary search tree and a target value, find k values in the BST that are closest t ...

  3. [LeetCode#272] Closest Binary Search Tree Value II

    Problem: Given a non-empty binary search tree and a target value, find k values in the BST that are ...

  4. [leetcode]272. Closest Binary Search Tree Value II二叉搜索树中最近的值2

    Given a non-empty binary search tree and a target value, find k values in the BST that are closest t ...

  5. 272. Closest Binary Search Tree Value II

    题目: Given a non-empty binary search tree and a target value, find k values in the BST that are close ...

  6. LC 272. Closest Binary Search Tree Value II 【lock,hard】

    Given a non-empty binary search tree and a target value, find k values in the BST that are closest t ...

  7. [Locked] Closest Binary Search Tree Value & Closest Binary Search Tree Value II

    Closest Binary Search Tree Value  Given a non-empty binary search tree and a target value, find the ...

  8. LeetCode Closest Binary Search Tree Value II

    原题链接在这里:https://leetcode.com/problems/closest-binary-search-tree-value-ii/ 题目: Given a non-empty bin ...

  9. [Swift]LeetCode272. 最近的二分搜索树的值 II $ Closest Binary Search Tree Value II

    Given a non-empty binary search tree and a target value, find k values in the BST that are closest t ...

随机推荐

  1. 聊一下,前后分离后带来的跨域访问和cookie问题

    在谈前后分离前,我们先看看什么是前后一体的.当我们用javaweb开发网站时,最终我们渲染的jsp或者springthymeleaf.我们的页面其实是WEB-INFO或者templates下.当用户请 ...

  2. tomcat正常运行一段时间后,突然访问不了项目了

    前言 我将项目部署在tomcat服务器上,本来都是好好的,输入网站地址就能访问:但是第二天一早去就会发现网站访问提示404,文件无法找到:我就很懵了. 排查 1.我是用的是chrome浏览器,所以尝试 ...

  3. 局域网部署ntp时间服务器

    搭建ntp时间服务器 时间服务器配置 须切换到root用户,再进行操作 检查ntp是否安装 [root@hadoop01 ~]# rpm -qa | grep ntp 如果没有安装,须安装 [root ...

  4. HTML+css基础 css的几种形式 css选择器的两大特性

    3.外联样式 css选择器的两大特性 1.继承性:所有跟文本字体有关的属性都会被子元素继承.且权重是0000. 2.层叠性:就是解决选择器权重大小的一种能力,就是看那个选择器的权重大.谁的权重大听谁的 ...

  5. SEO-------- 了解

    SEO(Search Engine Optimization) 译为:搜索引擎优化,是一种透过了解搜索引擎的运作规则来调整网站,以及提高目的的网站在有关搜索引擎内的排名方式. 目的:为了让用户更快的搜 ...

  6. 微软官方 Github 上的 EF 示例项目 EntityFramework.Docs

    项目地址:https://github.com/aspnet/EntityFramework.Docs/tree/master/samples/core 谢谢浏览!

  7. 【译】.NET Core 是 .NET 的未来

    为什么要翻译咧,.NET 5 都宣布在 .NET Core 之后发布咯,何不再给 .NET Core 打打鸡血,我这个 .NET Core 的死忠粉. 原文:<.NET Core is the ...

  8. PHP导出文件到csv函数

    PHP导出文件到CSV函数 function exportCSV($data=array(),$title=array(),$filename) { $encoded_filename = urlen ...

  9. MVC 表格按树状形式显示 jstree jqgrid

    1. 界面顯示 2.前端 jqgrid 代码 //加载表格 function GetGrid() { var selectedRowIndex = 0; var $gridTable = $('#gr ...

  10. Scrapy 运行多个爬虫

    本文所使用的 Scrapy 版本:Scrapy==1.8.0 一个 Scrapy 项目下可能会有多个爬虫,本文陈述两种情况: 多个爬虫 所有爬虫 显然,这两种情况并不一定是等同的.假设当前项目下有 3 ...