Given a non-empty binary search tree and a target value, find k values in the BST that are closest to the target.

Note:

  • Given target value is a floating point.
  • You may assume k is always valid, that is: k≤ total nodes.
  • You are guaranteed to have only one unique set of k values in the BST that are closest to the target.

Example:

Input: root = [4,2,5,1,3], target = 3.714286, and k = 2

    4
/ \
2 5
/ \
1 3 Output: [4,3]

Follow up:
Assume that the BST is balanced, could you solve it in less than O(n) runtime (where n = total nodes)?

这道题是之前那道 Closest Binary Search Tree Value 的拓展,那道题只让找出离目标值最近的一个节点值,而这道题让找出离目标值最近的k个节点值,难度瞬间增加了不少,博主最先想到的方法是用中序遍历将所有节点值存入到一个一维数组中,由于二分搜索树的性质,这个一维数组是有序的,然后再在有序数组中需要和目标值最近的k个值就简单的多,参见代码如下:

解法一:

class Solution {
public:
vector<int> closestKValues(TreeNode* root, double target, int k) {
vector<int> res, v;
inorder(root, v);
int idx = ;
double diff = numeric_limits<double>::max();
for (int i = ; i < v.size(); ++i) {
if (diff >= abs(target - v[i])) {
diff = abs(target - v[i]);
idx = i;
}
}
int left = idx - , right = idx + ;
for (int i = ; i < k; ++i) {
res.push_back(v[idx]);
if (left >= && right < v.size()) {
if (abs(v[left] - target) > abs(v[right] - target)) {
idx = right;
++right;
} else {
idx = left;
--left;
}
} else if (left >= ) {
idx = left;
--left;
} else if (right < v.size()) {
idx = right;
++right;
}
}
return res;
}
void inorder(TreeNode *root, vector<int> &v) {
if (!root) return;
inorder(root->left, v);
v.push_back(root->val);
inorder(root->right, v);
}
};

还有一种解法是直接在中序遍历的过程中完成比较,当遍历到一个节点时,如果此时结果数组不到k个,直接将此节点值加入结果 res 中,如果该节点值和目标值的差值的绝对值小于结果 res 的首元素和目标值差值的绝对值,说明当前值更靠近目标值,则将首元素删除,末尾加上当前节点值,反之的话说明当前值比结果 res 中所有的值都更偏离目标值,由于中序遍历的特性,之后的值会更加的遍历,所以此时直接返回最终结果即可,参见代码如下:

解法二:

class Solution {
public:
vector<int> closestKValues(TreeNode* root, double target, int k) {
vector<int> res;
inorder(root, target, k, res);
return res;
}
void inorder(TreeNode *root, double target, int k, vector<int> &res) {
if (!root) return;
inorder(root->left, target, k, res);
if (res.size() < k) res.push_back(root->val);
else if (abs(root->val - target) < abs(res[] - target)) {
res.erase(res.begin());
res.push_back(root->val);
} else return;
inorder(root->right, target, k, res);
}
};

下面这种方法是上面那种方法的迭代写法,原理一模一样,参见代码如下:

解法三:

class Solution {
public:
vector<int> closestKValues(TreeNode* root, double target, int k) {
vector<int> res;
stack<TreeNode*> s;
TreeNode *p = root;
while (p || !s.empty()) {
while (p) {
s.push(p);
p = p->left;
}
p = s.top(); s.pop();
if (res.size() < k) res.push_back(p->val);
else if (abs(p->val - target) < abs(res[] - target)) {
res.erase(res.begin());
res.push_back(p->val);
} else break;
p = p->right;
}
return res;
}
};

在来看一种利用最大堆来解题的方法,堆里保存的一个差值 diff 和节点值的 pair,中序遍历二叉树(也可以用其他遍历方法),然后对于每个节点值都计算一下和目标值之差的绝对值,由于最大堆的性质,diff 大的自动拍到最前面,维护k个 pair,如果超过了k个,就把堆前面大的 pair 删掉,最后留下的k个 pair,将 pair 中的节点值取出存入结果 res 中返回即可,参见代码如下:

解法四:

class Solution {
public:
vector<int> closestKValues(TreeNode* root, double target, int k) {
vector<int> res;
priority_queue<pair<double, int>> q;
inorder(root, target, k, q);
while (!q.empty()) {
res.push_back(q.top().second);
q.pop();
}
return res;
}
void inorder(TreeNode *root, double target, int k, priority_queue<pair<double, int>> &q) {
if (!root) return;
inorder(root->left, target, k, q);
q.push({abs(root->val - target), root->val});
if (q.size() > k) q.pop();
inorder(root->right, target, k, q);
}
};

下面的这种方法用了两个栈,pre 和 suc,其中 pre 存小于目标值的数,suc 存大于目标值的数,开始初始化 pre 和 suc 的时候,要分别将最接近目标值的稍小值和稍大值压入 pre 和 suc,然后循环k次,每次比较 pre 和 suc 的栈顶元素,看谁更接近目标值,将其存入结果 res 中,然后更新取出元素的栈,依次类推直至取完k个数返回即可,参见代码如下:

解法五:

class Solution {
public:
vector<int> closestKValues(TreeNode* root, double target, int k) {
vector<int> res;
stack<TreeNode*> pre, suc;
while (root) {
if (root->val <= target) {
pre.push(root);
root = root->right;
} else {
suc.push(root);
root = root->left;
}
}
while (k-- > ) {
if (suc.empty() || !pre.empty() && target - pre.top()->val < suc.top()->val - target) {
res.push_back(pre.top()->val);
getPredecessor(pre);
} else {
res.push_back(suc.top()->val);
getSuccessor(suc);
}
}
return res;
}
void getPredecessor(stack<TreeNode*> &pre) {
TreeNode *t = pre.top(); pre.pop();
if (t->left) {
pre.push(t->left);
while (pre.top()->right) pre.push(pre.top()->right);
}
}
void getSuccessor(stack<TreeNode*> &suc) {
TreeNode *t = suc.top(); suc.pop();
if (t->right) {
suc.push(t->right);
while (suc.top()->left) suc.push(suc.top()->left);
}
}
};

Github 同步地址:

https://github.com/grandyang/leetcode/issues/272

类似题目:

Closest Binary Search Tree Value

Binary Tree Inorder Traversal

参考资料:

https://leetcode.com/problems/closest-binary-search-tree-value-ii/

https://leetcode.com/problems/closest-binary-search-tree-value-ii/discuss/70515/Java-in-order-traversal-1ms-solution

https://leetcode.com/problems/closest-binary-search-tree-value-ii/discuss/70511/AC-clean-Java-solution-using-two-stacks

https://leetcode.com/problems/closest-binary-search-tree-value-ii/discuss/70549/Clear-Java-Solution-with-one-stack-one-linkedlist

https://leetcode.com/problems/closest-binary-search-tree-value-ii/discuss/70503/O(logN)-Java-Solution-with-two-stacks-following-hint

LeetCode All in One 题目讲解汇总(持续更新中...)

[LeetCode] 272. Closest Binary Search Tree Value II 最近的二分搜索树的值之二的更多相关文章

  1. [LeetCode] Closest Binary Search Tree Value II 最近的二分搜索树的值之二

    Given a non-empty binary search tree and a target value, find k values in the BST that are closest t ...

  2. [LeetCode] 272. Closest Binary Search Tree Value II 最近的二叉搜索树的值 II

    Given a non-empty binary search tree and a target value, find k values in the BST that are closest t ...

  3. [LeetCode#272] Closest Binary Search Tree Value II

    Problem: Given a non-empty binary search tree and a target value, find k values in the BST that are ...

  4. [leetcode]272. Closest Binary Search Tree Value II二叉搜索树中最近的值2

    Given a non-empty binary search tree and a target value, find k values in the BST that are closest t ...

  5. 272. Closest Binary Search Tree Value II

    题目: Given a non-empty binary search tree and a target value, find k values in the BST that are close ...

  6. LC 272. Closest Binary Search Tree Value II 【lock,hard】

    Given a non-empty binary search tree and a target value, find k values in the BST that are closest t ...

  7. [Locked] Closest Binary Search Tree Value & Closest Binary Search Tree Value II

    Closest Binary Search Tree Value  Given a non-empty binary search tree and a target value, find the ...

  8. LeetCode Closest Binary Search Tree Value II

    原题链接在这里:https://leetcode.com/problems/closest-binary-search-tree-value-ii/ 题目: Given a non-empty bin ...

  9. [Swift]LeetCode272. 最近的二分搜索树的值 II $ Closest Binary Search Tree Value II

    Given a non-empty binary search tree and a target value, find k values in the BST that are closest t ...

随机推荐

  1. Program 3 – CS 344

    Program 3 – CS 344OverviewIn this assignment you will write your own shell in C, similar to bash. No ...

  2. Redhat6.6替换Centos Yum源

    1.删除当前系统自带的yum [root@reddhat6_155_201 ~]# rpm -qa |grep yum yum-rhn-plugin--.el6.noarch yum-utils--. ...

  3. Docker入门学习及其安装

    1.Docker是一个开源的应用容器引擎,基于Go语言并遵从Apache2.0协议开源.Docker可以让开发者打包他们的应用以及依赖包到一个轻量级.可移植的容器中,然后发布到任何流行的Linux机器 ...

  4. c# sqlserver 删除大批量数据超时

    我做的项目有个功能需要进行批量删除,删除的数据量有4.5W条数据. 通过下面的sql语句删除这么多数据,直接导致结果超时,无法删除数据. ,,,......) 我查了一些资料,可能找的不全,找到了一个 ...

  5. Jar 打包与执行

    Java学习笔记之一,用于个人记录.整理自<Head First Java>. 假设有如下目录结构: 程序入口在 Jukebox8.java.这个代码文件开头是有如下这样的包声明语句的: ...

  6. Docker(Linux)学习笔记以及Redis/MariaDB的容器使用后台全自动启动

    1:Docker安装,由于Docker后续pull镜像的服务器默认是在国外的,速度实在是太慢,这里使用阿里云的镜像 阿里云的Docker CE 镜像源站进行安装 docker ===========U ...

  7. js、jquery、css属性及出错集合

    *)注意使用jquery设置css的语法 css("propertyname","value");#单个时时逗号 css({"propertyname ...

  8. maven Could not resolve dependencies

    错误语句 Could not resolve dependencies for project weiyinfu:poemqa:jar:1.0: The following artifacts cou ...

  9. Laravel 创建指定表 migrate

    解决方案:打开创建表的那个 migration 文件,在创建表的方法执行之前加一个判断条件 if (!Schema::hasTable('password_resets')) { Schema::cr ...

  10. 阅读高翔的RGBD-SLAM博文笔记

    目录 高翔的RGBD-SLAM笔记 前端VO: 后端优化 高翔的RGBD-SLAM笔记 RGBD相机的特点: 使用RGBD相机中的深度这一维信息,以及相机的针孔成像模型,相机的内参,可以将二维点恢复成 ...