思维题

此题应该是比较偏思维的。

假设一次反射后前进的距离是\(2^x(2y+1)\),则显然,它可以看做是前进距离为\(2^x\)的光线经过了\((2y+1)\)次反射,两者是等价的,甚至后者可能还要更优。

因此,我们只需考虑前进距离为\(2^x\)的光线。

也就是说,我们枚举\(x\),统计\((2^x+a_i)\% 2^{x+1}\)与\(b_i\%2^{x+1}\)中众数的出现次数的最大值。

关于众数的统计,我很\(naive\)地开了个\(map\),实际上,似乎用排序可以得到更优秀的速度?

代码

#pragma GCC optimize(2)
#include<bits/stdc++.h>
#define Tp template<typename Ty>
#define Ts template<typename Ty,typename... Ar>
#define Reg register
#define RI Reg int
#define Con const
#define CI Con int&
#define I inline
#define W while
#define N 150000
#define Gmax(x,y) (x<(y)&&(x=(y)))
#define swap(x,y) (x^=y^=x^=y)
using namespace std;
int n,m,h,a[N+5],b[N+5];
class FastIO
{
private:
#define FS 100000
#define tc() (A==B&&(B=(A=FI)+fread(FI,1,FS,stdin),A==B)?EOF:*A++)
#define tn (x<<3)+(x<<1)
#define D isdigit(c=tc())
int f;char c,*A,*B,FI[FS];
public:
I FastIO() {A=B=FI;}
Tp I void read(Ty& x) {x=0,f=1;W(!D) f=c^'-'?1:-1;W(x=tn+(c&15),D);x*=f;}
Ts I void read(Ty& x,Ar&... y) {read(x),read(y...);}
}F;
class MultiSolver
{
private:
map<int,int> p;
public:
I void Solve()
{
unsigned k,kk,X;RI i,t,res=0,ans=0,mn=min(a[1],b[1]),mx;
for(i=1;i<=n;++i) a[i]-=mn;for(i=1;i<=m;++i) b[i]-=mn;mx=max(a[n],b[m]);//初始化,全部取正
for(t=0,i=1;i<=n;++i) a[i]&1&&++t;Gmax(ans,max(t,n-t));//若单独考虑一边
for(t=0,i=1;i<=m;++i) b[i]&1&&++t;Gmax(ans,max(t,m-t));//同上
for(i=1;i<=n;++i) t=++p[a[i]],Gmax(res,t);
for(p.clear(),i=1;i<=m;++i) t=++p[b[i]],Gmax(ans,res+t);//考虑竖直情况
for(k=1,kk=2;kk<=mx;k<<=1,kk<<=1)//枚举光线前进距离
{
for(X=kk-1,p.clear(),i=1;i<=n;++i) ++p[(k+a[i])&X];//统计众数
for(i=1;i<=m;++i) t=++p[b[i]&X],Gmax(ans,t);//统计众数并更新答案
}printf("%d",ans);//输出
}
}S;
int main()
{
freopen("mirror.in","r",stdin),freopen("mirror.out","w",stdout);
RI i;for(F.read(n,m,h),i=1;i<=n;++i) F.read(a[i]);for(i=1;i<=m;++i) F.read(b[i]);//读入
return sort(a+1,a+n+1),sort(b+1,b+m+1),S.Solve(),0;//先排序,后求解
}

【2019.7.15 NOIP模拟赛 T1】夹缝(mirror)(思维题)的更多相关文章

  1. 【2019.8.15 慈溪模拟赛 T1】插头(plugin)(二分+贪心)

    二分 首先,可以发现,最后的答案显然满足可二分性,因此我们可以二分答案. 然后,我们只要贪心,就可以验证了. 贪心 不难发现,肯定会优先选择能提供更多插座的排插,且在确定充电器个数的情况下,肯定选择能 ...

  2. 【2019.7.20 NOIP模拟赛 T1】A(A)(暴搜)

    打表+暴搜 这道题目,显然是需要打表的,不过打表的方式可以有很多. 我是打了两个表,分别表示每个数字所需的火柴棒根数以及从一个数字到另一个数字,除了需要去除或加入的火柴棒外,至少需要几根火柴棒. 然后 ...

  3. 【2019.7.25 NOIP模拟赛 T1】变换(change)(思维+大分类讨论)

    几个性质 我们通过推式子可以发现: \[B⇒AC⇒AAB⇒AAAC⇒C\] \[C⇒AB⇒AAC⇒AAAB⇒B\] 也就是说: 性质一: \(B,C\)可以相互转换. 则我们再次推式子可以发现: \[ ...

  4. 【2019.7.22 NOIP模拟赛 T1】麦克斯韦妖(demon)(质因数分解+DP)

    暴力\(DP\) 先考虑暴力\(DP\)该怎么写. 因为每个序列之后是否能加上新的节点只与其结尾有关,因此我们设\(f_i\)为以\(i\)为结尾的最长序列长度. 每次枚举一个前置状态,判断是否合法之 ...

  5. 【2019.7.16 NOIP模拟赛 T1】洗牌(shuffle)(找环)

    找环 考虑每次洗牌其实是一次置换的过程,而这样必然就会有循环出现. 因此我们直接通过枚举找出每一个循环,询问时只要找到环上对应的位置就可以了. 貌似比我比赛时被卡成\(30\)分的倍增简单多了? 代码 ...

  6. 【2019.7.15 NOIP模拟赛 T2】与非树(nand)(树形DP)

    树形\(DP\) 实际上,这道题应该不是很难. 我们设\(f_{x,i,j}\)表示在以\(x\)为根的子树内,原本应输出\(i\),结果输出了\(j\)的情况数. 转移时,为了方便,我们先考虑与,再 ...

  7. 【2019.7.24 NOIP模拟赛 T1】道路建设(road)(水题)

    原题与此题 原题是一道神仙不可做题,两者区别在于,原题不能有重边和自环. 然而,这题可以有重边... 于是这题就变成了一道大水题. 此题的解法 考虑如何构造. 对于\(n\le10^4\)的情况: 对 ...

  8. 【2019.7.26 NOIP模拟赛 T1】数字查找(figure)(数学)

    推式子 我们设\(n=kp+w\),则: \[(kp+w)a^{kp+w}\equiv b(mod\ p)\] 将系数中的\(kp+w\)向\(p\)取模,指数中的\(kp+w\)根据欧拉定理向\(p ...

  9. 2019.7.26 NOIP 模拟赛

    这次模拟赛真的,,卡常赛. The solution of T1: std是打表,,考场上sb想自己改进匈牙利然后wei了(好像匈牙利是错的. 大力剪枝搜索.代码不放了. 这是什么神仙D1T1,爆蛋T ...

随机推荐

  1. MySQL存储过程-2019/7/18

    MySQL 5.0 版本开始支持存储过程. 存储过程(Stored Procedure)是一种在数据库中存储复杂程序,以便外部程序调用的一种数据库对象. 存储过程是为了完成特定功能的SQL语句集,经编 ...

  2. Windows 防火墙无法更改某些设置错误代码 0x80070422

    Windows 防火墙无法更改某些设置错误代码 0x80070422 解决方法: 1.cmd ->services.msc 按下回车键打开服务 :   2.在服务界面双击打开[Windows F ...

  3. redis命令之 ----key(键)

    DEL DEL key [key ...] 删除给定的一个或多个 key . 不存在的 key 会被忽略. DUMP DUMP key 序列化给定 key ,并返回被序列化的值,使用 RESTORE  ...

  4. 解锁云原生 AI 技能 - 开发你的机器学习工作流

    按照上篇文章<解锁云原生 AI 技能 | 在 Kubernetes 上构建机器学习系统>搭建了一套 Kubeflow Pipelines 之后,我们一起小试牛刀,用一个真实的案例,学习如何 ...

  5. RocketMQ多master迁移至多master多slave模式

    一.项目背景 由于当前生产环境RocketMQ机器使用年限较长,已经过保,并且其中一台曾经发生过异常宕机事件.并且早期网络规划较乱,生产.开发.测试等网络没有分开,公司决定对当前网络进行规划,区分各个 ...

  6. 【机器学习笔记】ID3构建决策树

    好多算法之类的,看理论描述,让人似懂非懂,代码走一走,现象就了然了. 引: from sklearn import tree names = ['size', 'scale', 'fruit', 'b ...

  7. .net core 发布到iis问题 HTTP Error 500.30 - ANCM In-Process Start Failure

    1. 没有在Program里配置IIS webBuilder.UseIIS(); 2. StartupProduction 里AutoFac容器注入错误和新版的CORS中间件已经阻止使用允许任意Ori ...

  8. C# 去除数字中多于的0

    decimal i = decimal.Parse(Console.ReadLine()); Console.WriteLine((i).ToString(")); Console.Writ ...

  9. python中的三个读read(),readline()和readlines()

    Python 将文本文件的内容读入可以操作的字符串变量非常容易. 文件对象提供了三个“读”方法: .read()..readline() 和 .readlines(). 每种方法可以接受一个变量以限制 ...

  10. windows 下安装MongoDB

    一:下载mongodb安装包 下载地址:https://www.mongodb.com/download-center/community 这里推荐下载msi的安装包 二:安装mongodb 双击下载 ...