JSOI 2010 连通数
洛谷 P4306 [JSOI2010]连通数
题目描述
度量一个有向图联通情况的一个指标是连通数,指图中可达顶点对个的个数。
如图
顶点 11 可达 1,2,3,4,51, 2, 3, 4, 5
顶点 22 可达 2,3,4,~52, 3, 4, 5
顶点 33 可达 3,4,53, 4, 5
顶点 4,~54, 5 都只能到达自身。
所以这张图的连通数为 1414。
给定一张图,请你求出它的连通数
输入格式
输入数据第一行是图顶点的数量,一个正整数N。 接下来N行,每行N个字符。第i行第j列的1表示顶点i到j有边,0则表示无边。
输出格式
输出一行一个整数,表示该图的连通数。
输入输出样例
输入 #1复制
输出 #1复制
说明/提示
对于100%的数据,N不超过2000。
题解:
好不容易碰上一道紫水题
人生中首次自己自主AC紫题,感觉比我国爆破第一颗原子弹还激动...
大家都使用的tarjan缩点、反向建图等正解做法,但是这些复杂图论我不是很会。
我一开始想到的是SPFA,我每个点跑一遍最短路,跑完之后开始从1到n扫,如果dist数组被更新了就说明此点可达,累加ans。
最后直接输出即可
数据还是比较水的,请求洛谷加强数据,我这个算法的时间复杂度奇高,预期TLE5个点,但是竟然AC了...
代码:
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
using namespace std;
int n,ans;
char s[2010];
int tot,to[4000001],nxt[4000001],head[2001];
int dist[2001],v[2001];
void add(int x,int y)
{
to[++tot]=y;
nxt[tot]=head[x];
head[x]=tot;
}
void spfa(int start)
{
for(int i=1;i<=n;i++)
dist[i]=1e9,v[i]=0;
queue<int> q;
q.push(start);
v[start]=1;
dist[start]=0;
while(!q.empty())
{
int x=q.front();
q.pop();
v[x]=0;
for(int i=head[x];i;i=nxt[i])
{
int y=to[i];
if(dist[y]>dist[x]+1)
{
dist[y]=dist[x]+1;
if(v[y]==0)
q.push(y),v[y]=1;
}
}
}
}
int main()
{
scanf("%d",&n);
for(int i=1;i<=n;i++)
{
scanf("%s",s+1);
for(int j=1;j<=n;j++)
if(s[j]=='1')
add(i,j);
}
for(int i=1;i<=n;i++)
{
spfa(i);
for(int j=1;j<=n;j++)
if(dist[j]<1e9)
ans++;
}
printf("%d",ans);
return 0;
}
JSOI 2010 连通数的更多相关文章
- BZOJ 1823 JSOI 2010 盛宴 2-SAT
标题效果:有着n材料的种类,m陪审团. 每种材料具有两种不同的方法.每个法官都有两个标准.做出来的每一个法官的菜必须至少满足一个需求. 问:是否有这样一个程序. 思考:2-SAT经典的内置图形问题.因 ...
- [JSOI 2010] 满汉全席
[题目链接] https://www.lydsy.com/JudgeOnline/problem.php?id=1823 [算法] 2-SAT [代码] #include<bits/stdc++ ...
- [BZOJ2208][Jsoi2010]连通数 暴力枚举
Description Input 输入数据第一行是图顶点的数量,一个正整数N. 接下来N行,每行N个字符.第i行第j列的1表示顶点i到j有边,0则表示无边. Output 输出一行一个整数,表示该图 ...
- 【BZOJ2208】[Jsoi2010]连通数 DFS
[BZOJ2208][Jsoi2010]连通数 Description Input 输入数据第一行是图顶点的数量,一个正整数N. 接下来N行,每行N个字符.第i行第j列的1表示顶点i到j有边,0则表示 ...
- [luoguP4306][JSOI2010]连通数
\[Yeasion\] \[Nein\] 其实我很奇怪为什么我的正解和输出\(N \times N\)的效果是一样的.....嗯,大概是\(RP\)问题吧.... 嗯首先来看一下题目: 题目描述: 度 ...
- [bzoj2208][Jsoi2010]连通数_bitset_传递闭包floyd
连通数 bzoj-2208 Jsoi-2010 题目大意:给定一个n个节点的有向图,问每个节点可以到达的点的个数和. 注释:$1\le n\le 2000$. 想法:网上有好多tarjan+拓扑序dp ...
- Luogu P4306 JSOI2010 连通数
tarjan有向图缩点的基础应用.把原图中某点的连通数转化为反向图中"能够到达某点的个数".缩点后,每个新点的贡献等于 原dcc大小 * f[i] 其中f[i]表示(包括该点自身) ...
- 如何使用本地账户"完整"安装 SharePoint Server 2010+解决“New-SPConfigurationDatabase : 无法连接到 SharePoint_Config 的 SQL Server 的数据 库 master。此数据库可能不存在,或当前用户没有连接权限。”
注:目前看到的解决本地账户完整安装SharePoint Server 2010的解决方案如下,但是,有但是的哦: 当我们选择了"完整"模式安装SharePointServer201 ...
- How to accept Track changes in Microsoft Word 2010?
"Track changes" is wonderful and remarkable tool of Microsoft Word 2010. The feature allow ...
随机推荐
- kinaba 安装踩坑: FATAL Error: [elasticsearch.url]: definition for this key is missing
操作系统:Linux kibana 版本: 7.4.0 1. 在/etc/yum.repos.d/ 下新建 kibana.repo 配置 yum 源地址 内容如下: [root@localhost ...
- server 2012 r2 配置
filezilla的问题还是让人摸不着头脑,配置和别的机器上一样就是报STL权限错误,最后换了个端口就连上了. 服务器,填远端IP,被动模式打开,生成一个证书,被动模式的商品一定要在入站规则里 客户端 ...
- SpringBoot之CommandLineRunner接口和ApplicationRunner接口
我们在开发中可能会有这样的情景.需要在容器启动的时候执行一些内容.比如读取配置文件,数据库连接之类的.SpringBoot给我们提供了两个接口来帮助我们实现这种需求.这两个接口分别为CommandLi ...
- win10下MYSQL的下载、安装以及配置超详解教程(转)
下载MYSQL 官网下载MYSQL5.7.21版本,链接地址https://www.mysql.com/downloads/.下载流程图如下: 进入官网点击Community,下载社区版. 找到MYS ...
- setInterval()调用其他函数时候报错
(function(){ function shortcut() { // 配件优化 window.topValue = 0// 上次滚动条到顶部的距离 window.interval = null; ...
- PHP服务端优化全面总结
一.优化PHP原则 1.1PHP代码的优化 (1)升级最新的PHP版本 鸟哥PPT里的对比数据,就是WordPress在PHP5.6执行100次会产生70亿次的CPU指令执行数目,而在PHP7中只需要 ...
- scala中分组的算子的用法
val rdd= sc.parallelize(List(("tom",1),("jerry",3),("kitty",2),(" ...
- WPF ResourceDictionary XAML资源 c#代码 获取与遍历
使用C#代码来获取XAML资源,除去正常的FindResource.而且是能查询到资源的对象. 说实话还是很麻烦的. 比如说我现在有一堆静态资源放在xaml的资源中,我想通过绑定的方式来获取. 好比是 ...
- 《 .NET并发编程实战》阅读指南 - 第9章
先发表生成URL以印在书里面.等书籍正式出版销售后会公开内容.
- C#/.Net操作MongoDBHelper类
先 NuGet两个程序集 1:MongoDB.Driver. 2:MongoDB.Bson namespace ConsoleApp1{ /// <summary> /// Mongo ...