k-均值(k-means)聚类

1、k-均值算法

k-均值算法是一种无监督学习,是一种“基于原型的聚类”(prototype-based clustering)方法,给定的数据是不含标签的D={x(1),x(2),...,x(i)}D=\{{x^{(1)},x^{(2)},...,x^{(i)}}\}D={x(1),x(2),...,x(i)},目标是找出数据的模式特征进行分类。如社交网络分析,通过用户特征进行簇划分,分出不同群体。



(图源网络,侵删)

2、k-均值算法的代价函数

给定数据集D={x(1),x(2),...,x(i)}D=\{{x^{(1)},x^{(2)},...,x^{(i)}}\}D={x(1),x(2),...,x(i)},k-均值聚类算法的代价函数(基于欧式距离的平方误差)为:

J=m1∑i=1m∣∣x(i)−uc(i)∣∣2J=\frac{m}{1}\sum_{i=1}^{m}||x^{(i)}-u_{c^{(i)}}||^2J=1m​i=1∑m​∣∣x(i)−uc(i)​∣∣2

其中,c(i)c^{(i)}c(i)是训练样例x(i)x^{(i)}x(i)分配的聚类序号;uc(i)u_{c^{(i)}}uc(i)​是 x(i)x^{(i)}x(i)所属聚类的中心点 。k-均值算法的代价函数函数的物理意义就是,训练样例到其所属的聚类中心点的距离的平均值。

3、k-均值算法步骤

k-均值算法主要包括:根据聚类中心分配样本类别——>更新聚类中心

  1. 随机选择K个聚类中心u1,u2,...,uKu_1,u_2,...,u_Ku1​,u2​,...,uK​;
  2. 从1~m中遍历所有的数据集,计算x(i)x^{(i)}x(i)分别到u1,u2,...,uKu_1,u_2,...,u_Ku1​,u2​,...,uK​的距离,记录距离最短的聚类中心点uku_kuk​,然后把x(i)x^{(i)}x(i)这个点分配给这个簇,即令 c(i)=kc^{(i)}=kc(i)=k;
  3. 从1~k中遍历所有的聚类中心,移动聚类中心的新位置到这个簇的均值处,即uk=1ck∑j=1ckx(j)u_k=\frac{1}{c_k}\sum_{j=1}^{c_k}x^{(j)}uk​=ck​1​∑j=1ck​​x(j),其中ckc_kck​表示这个簇的样本数;
  4. 重复步骤2,直到聚类中心不再移动。

4、初始化聚类中心点和聚类个数

1、在实际应用的过程中,聚类结果会和我们初始化的聚类中心相关,因为代价函数可能会收敛在一个局部最优解上,而不是全局最优解。我们的解决方法是多次初始化,然后选取代价函数最小的



2、如果没有特别的业务要求,聚类个数如何选取?我们可以把聚类个数作为横坐标,代价函数作为纵坐标,找出拐点。

5、sklearn实现k-means算法

推荐一篇博文: 聚类效果评价



主函数KMeans

sklearn.cluster.KMeans(n_clusters=8,
init='k-means++',
n_init=10,
max_iter=300,
tol=0.0001,
precompute_distances='auto',
verbose=0,
random_state=None,
copy_x=True,
n_jobs=1,
algorithm='auto'
)

参数解释:

  1. n_clusters:簇的个数,即你想聚成几类
  2. init: 初始簇中心的获取方法
  3. n_init: 获取初始簇中心的更迭次数,为了弥补初始质心的影响,算法默认会初始10次质心,实现算法,然后返回最好的结果。
  4. max_iter: 最大迭代次数(因为kmeans算法的实现需要迭代)
  5. tol: 容忍度,即kmeans运行准则收敛的条件
  6. precompute_distances:是否需要提前计算距离,这个参数会在空间和时间之间做权衡,如果是True 会把整个距离矩阵都放到内存中,auto 会默认在数据样本大于featurs*samples 的数量大于12e6 的时候False,False 时核心实现的方法是利用Cpython 来实现的
  7. verbose: 冗长模式(不太懂是啥意思,反正一般不去改默认值)
  8. random_state: 随机生成簇中心的状态条件。
  9. copy_x: 对是否修改数据的一个标记,如果True,即复制了就不会修改数据。bool 在scikit-learn 很多接口中都会有这个参数的,就是是否对输入数据继续copy 操作,以便不修改用户的输入数据。这个要理解Python 的内存机制才会比较清楚。
  10. n_jobs: 并行设置
  11. algorithm: kmeans的实现算法,有:‘auto’, ‘full’, ‘elkan’, 其中 'full’表示用EM方式实现

代码:

# -*- coding: utf-8 -*-
"""
Created on Wed Nov 20 18:52:21 2019 @author: 1
""" import pandas as pd
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans df=pd.read_csv('D:\\workspace\\python\machine learning\\data\\iris.csv',sep=',')
data=df.iloc[:,0:3]
kmeans=KMeans(n_clusters=3) #n_clusters:number of cluster
kmeans.fit(data)
labels=kmeans.labels_#聚类标签
centres=kmeans.cluster_centers_#聚类中心 #画三维聚类结果图
markers=['o','^','*']
colors=['r','b','y']
data['labels']=labels
ax = plt.subplot(111, projection='3d') # 创建一个三维的绘图工程
data_new,X,Y,Z=[[]]*3,[[]]*3,[[]]*3,[[]]*3
for i in range(3):
data_new[i]=data.loc[data['labels']==i]
X[i],Y[i],Z[i]=data_new[i].iloc[:,0],data_new[i].iloc[:,1],data_new[i].iloc[:,2]
ax.scatter(X[i],Y[i],Z[i],marker=markers[i],c=colors[i])

聚类结果:

机器学习——k-均值算法(聚类)的更多相关文章

  1. 机器学习之K均值算法(K-means)聚类

    K均值算法(K-means)聚类 [关键词]K个种子,均值 一.K-means算法原理 聚类的概念:一种无监督的学习,事先不知道类别,自动将相似的对象归到同一个簇中. K-Means算法是一种聚类分析 ...

  2. 聚类算法:K-means 算法(k均值算法)

    k-means算法:      第一步:选$K$个初始聚类中心,$z_1(1),z_2(1),\cdots,z_k(1)$,其中括号内的序号为寻找聚类中心的迭代运算的次序号. 聚类中心的向量值可任意设 ...

  3. 聚类--K均值算法:自主实现与sklearn.cluster.KMeans调用

    1.用python实现K均值算法 import numpy as np x = np.random.randint(1,100,20)#产生的20个一到一百的随机整数 y = np.zeros(20) ...

  4. 【机器学习】K均值算法(I)

    K均值算法是一类非监督学习类,其可以通过观察样本的离散性来对样本进行分类. 例如,在对如下图所示的样本中进行聚类,则执行如下步骤 1:随机选取3个点作为聚类中心. 2:簇分配:遍历所有样本然后依据每个 ...

  5. 机器学习算法之Kmeans算法(K均值算法)

    Kmeans算法(K均值算法) KMeans算法是典型的基于距离的聚类算法,采用距离作为相似性的评价指标,即认为两个对象的距离越近,其相似度就越大.该算法认为簇是由距离靠近的对象组成的,因此把得到紧凑 ...

  6. 使用K均值算法进行图片压缩

    K均值算法   上一期介绍了机器学习中的监督式学习,并用了离散回归与神经网络模型算法来解决手写数字的识别问题.今天我们介绍一种机器学习中的非监督式学习算法--K均值算法.   所谓非监督式学习,是一种 ...

  7. K 均值算法-如何让数据自动分组

    公号:码农充电站pro 主页:https://codeshellme.github.io 之前介绍到的一些机器学习算法都是监督学习算法.所谓监督学习,就是既有特征数据,又有目标数据. 而本篇文章要介绍 ...

  8. 一句话总结K均值算法

    一句话总结K均值算法 核心:把样本分配到离它最近的类中心所属的类,类中心由属于这个类的所有样本确定. k均值算法是一种无监督的聚类算法.算法将每个样本分配到离它最近的那个类中心所代表的类,而类中心的确 ...

  9. Bisecting KMeans (二分K均值)算法讲解及实现

    算法原理 由于传统的KMeans算法的聚类结果易受到初始聚类中心点选择的影响,因此在传统的KMeans算法的基础上进行算法改进,对初始中心点选取比较严格,各中心点的距离较远,这就避免了初始聚类中心会选 ...

  10. KMeans (K均值)算法讲解及实现

    算法原理 KMeans算法是典型的基于距离的聚类算法,采用距离作为相似性的评价指标,即认为两个对象的距离越近,其相似度就越大.该算法认为簇是由距离靠近的对象组成的,因此把得到紧凑且独立的簇作为最终目标 ...

随机推荐

  1. About me & 友链

    窝是图图小淘气 面对世界很好奇 啊呸 抱歉 拿错咧 重来 是他!是他!就是他! 我们滴朋友哦小哪吒! (汗 又拿错咧 菜鸡yxj 是来自美丽富饶的SDGR 的一名高中生 每天最喜欢做的事就是 花式被机 ...

  2. CSP前的板子

    板子A(扩展欧几里得) 题目描述 求关于x的同余方程 ax≡1(modb) 的最小正整数解. 输入格式 一行,包含两个正整数 a,b,用一个空格隔开. 输出格式 一个正整数 x​,即最小正整数解.输入 ...

  3. UDF——处理二维网格的利器:Boost.Geometry库

    本文编译工具:VC++ UDF Studio 该插件可以直接在Visual Studio中一键编译.加载.调试UDF源码,极大提高编写排错效率,且支持C++,MFC,Windows API和第三方库, ...

  4. JVM系列之五:垃圾回收

    . jdk1.7的堆内存 1. 堆(Java堆) 堆是java虚拟机所管理的内存中最大的一块内存区域,也是被各个线程共享的内存区域, 在JVM启动时创建,该内存区域存放了对象实例(包括基本类型的变量及 ...

  5. portal项目启动问题

    错误信息: Disconnected from the target VM, address: '127.0.0.1:58909', transport: 'socket' Process finis ...

  6. Makefile的简洁模版

    博客地址:http://www.cnblogs.com/zengjianrong/p/4184854.html 为了方便编译零碎的测试代码,在代码的存放目录编辑了一个Makefile,添加新代码文件后 ...

  7. 集合类源码(三)Collection之List(CopyOnWriteArrayList, Stack)

    CopyOnWriteArrayList 功能 全名 public class CopyOnWriteArrayList<E> implements List<E>, Rand ...

  8. 【CF285E】Positions in Permutations(动态规划,容斥)

    [CF285E]Positions in Permutations(动态规划,容斥) 题面 CF 洛谷 题解 首先发现恰好很不好算,所以转成至少,这样子只需要确定完一部分数之后剩下随意补. 然后套一个 ...

  9. C#通过字符串分割字符串Split

    string[] strArr = str.Split(new[] {"****==="},StringSplitOptions.None); 更多内容关注公众号 洛水梅家

  10. MD5加密实现方法

    在这里给大家分享一个超级简单的md5加密实现方法 如下: 引用命名空间 using System.Security.Cryptography; using System.Text; C#代码 publ ...