iOS 多线程的简单理解(2) 队列 :串行 ,并行,MainQueue,GlobalQueue
多线程队列是装载线程任务的队形结构。(系统以先进先出的方式调度队列中的任务执行 FIFO)。在GCD中有两种队列:
串行队列、并发队列。
队列 :串行队列、并发队列,全局主对列,全局并发队列
2.1. 串行队列:线程只能依次有序的执行。
2.1.1 串行方法 1
- (void)SerialQueueOne{
NSLog(@"串行1 start :::%@",[NSThread currentThread]);
dispatch_queue_t queue = dispatch_queue_create("test", DISPATCH_QUEUE_SERIAL);
dispatch_sync(queue, ^{
for (int i = 0; i < 3; i++) {
NSLog(@"串行1 index %d ::: %@",i,[NSThread currentThread]);
}
});
dispatch_sync(queue, ^{
for (int i = 10; i < 13; i++) {
NSLog(@"串行1 index %d ::: %@",i,[NSThread currentThread]);
}
});
NSLog(@"串行1 end :::%@",[NSThread currentThread]);
}
执行结果:::
2017-12-20 13:49:47.427330+0800 DeadThread[8972:2450330] 串行1 start :::<NSThread: 0x60800006ae80>{number = 1, name = main}
2017-12-20 13:49:47.427470+0800 DeadThread[8972:2450330] 串行1 index 0 ::: <NSThread: 0x60800006ae80>{number = 1, name = main}
2017-12-20 13:49:47.427567+0800 DeadThread[8972:2450330] 串行1 index 1 ::: <NSThread: 0x60800006ae80>{number = 1, name = main}
2017-12-20 13:49:47.427636+0800 DeadThread[8972:2450330] 串行1 index 2 ::: <NSThread: 0x60800006ae80>{number = 1, name = main}
2017-12-20 13:49:47.427696+0800 DeadThread[8972:2450330] 串行1 index 10 ::: <NSThread: 0x60800006ae80>{number = 1, name = main}
2017-12-20 13:49:47.427819+0800 DeadThread[8972:2450330] 串行1 index 11 ::: <NSThread: 0x60800006ae80>{number = 1, name = main}
2017-12-20 13:49:47.427893+0800 DeadThread[8972:2450330] 串行1 index 12 ::: <NSThread: 0x60800006ae80>{number = 1, name = main}
2017-12-20 13:49:47.427966+0800 DeadThread[8972:2450330] 串行1 end :::<NSThread: 0x60800006ae80>{number = 1, name = main}
得到结果:::
1.代码顺序 执行;
2.1.2 串行方法 2
- (void)SerialQueueTwo{
NSLog(@"串行2 start :::%@",[NSThread currentThread]);
dispatch_queue_t queue = dispatch_queue_create("test", DISPATCH_QUEUE_SERIAL);
dispatch_async(queue, ^{
for (int i = 0; i < 3; i++) {
NSLog(@"串行2 index %d ::: %@",i,[NSThread currentThread]);
}
});
dispatch_async(queue, ^{
for (int i = 10; i < 13; i++) {
NSLog(@"串行2 index %d ::: %@",i,[NSThread currentThread]);
}
});
NSLog(@"串行2 end :::%@",[NSThread currentThread]);
}
执行结果:::
2017-12-20 13:50:47.130380+0800 DeadThread[8993:2458517] 串行1 start :::<NSThread: 0x60c000071300>{number = 1, name = main}
2017-12-20 13:50:47.130533+0800 DeadThread[8993:2458517] 串行1 index 0 ::: <NSThread: 0x60c000071300>{number = 1, name = main}
2017-12-20 13:50:47.130648+0800 DeadThread[8993:2458517] 串行1 index 1 ::: <NSThread: 0x60c000071300>{number = 1, name = main}
2017-12-20 13:50:47.130724+0800 DeadThread[8993:2458517] 串行1 index 2 ::: <NSThread: 0x60c000071300>{number = 1, name = main}
2017-12-20 13:50:47.130896+0800 DeadThread[8993:2458517] 串行1 index 10 ::: <NSThread: 0x60c000071300>{number = 1, name = main}
2017-12-20 13:50:47.130979+0800 DeadThread[8993:2458517] 串行1 index 11 ::: <NSThread: 0x60c000071300>{number = 1, name = main}
2017-12-20 13:50:47.131057+0800 DeadThread[8993:2458517] 串行1 index 12 ::: <NSThread: 0x60c000071300>{number = 1, name = main}
2017-12-20 13:50:47.131130+0800 DeadThread[8993:2458517] 串行1 end :::<NSThread: 0x60c000071300>{number = 1, name = main}
得到结果:::
1.没有开启线程
2.代码顺序执行;
2.2 并发队列:线程可以同时一起进行执行。实际上是CPU在多条线程之间快速的切换。(并发功能只有在异步(dispatch_async)函数下才有效)
2.2.1 并发方法 1
- (void)concurrentQueueOne{
NSLog(@"并发1 start :::%@",[NSThread currentThread]);
dispatch_queue_t queue = dispatch_queue_create("test", DISPATCH_QUEUE_CONCURRENT);
dispatch_sync(queue, ^{
for (int i = 0; i < 3; i++) {
NSLog(@"并发1 index %d ::: %@",i,[NSThread currentThread]);
}
});
dispatch_sync(queue, ^{
for (int i = 10; i < 13; i++) {
NSLog(@"并发1 index %d ::: %@",i,[NSThread currentThread]);
}
});
NSLog(@"并发1 end :::%@",[NSThread currentThread]);
}
执行结果:::
2017-12-20 13:52:37.606997+0800 DeadThread[9023:2470506] 并发1 start :::<NSThread: 0x608000261600>{number = 1, name = main}
2017-12-20 13:52:37.607130+0800 DeadThread[9023:2470506] 并发1 index 0 ::: <NSThread: 0x608000261600>{number = 1, name = main}
2017-12-20 13:52:37.607197+0800 DeadThread[9023:2470506] 并发1 index 1 ::: <NSThread: 0x608000261600>{number = 1, name = main}
2017-12-20 13:52:37.607447+0800 DeadThread[9023:2470506] 并发1 index 2 ::: <NSThread: 0x608000261600>{number = 1, name = main}
2017-12-20 13:52:37.607685+0800 DeadThread[9023:2470506] 并发1 index 10 ::: <NSThread: 0x608000261600>{number = 1, name = main}
2017-12-20 13:52:37.607891+0800 DeadThread[9023:2470506] 并发1 index 11 ::: <NSThread: 0x608000261600>{number = 1, name = main}
2017-12-20 13:52:37.608056+0800 DeadThread[9023:2470506] 并发1 index 12 ::: <NSThread: 0x608000261600>{number = 1, name = main}
2017-12-20 13:52:37.608190+0800 DeadThread[9023:2470506] 并发1 end :::<NSThread: 0x608000261600>{number = 1, name = main}
得到结果:::
1.线程顺序执行
2.2.2 并发方法 2
- (void)concurrentQueueTwo{
NSLog(@"并发2 start :::%@",[NSThread currentThread]);
dispatch_queue_t queue = dispatch_queue_create("test", DISPATCH_QUEUE_CONCURRENT);
dispatch_async(queue, ^{
for (int i = 0; i < 3; i++) {
NSLog(@"并发2 index %d ::: %@",i,[NSThread currentThread]);
}
});
dispatch_async(queue, ^{
for (int i = 10; i < 13; i++) {
NSLog(@"并发2 index %d ::: %@",i,[NSThread currentThread]);
}
});
NSLog(@"并发2 end :::%@",[NSThread currentThread]);
}
执行结果::;
2017-12-20 13:56:45.573695+0800 DeadThread[9084:2492640] 并发2 start :::<NSThread: 0x604000077d80>{number = 1, name = main}
2017-12-20 13:56:45.573891+0800 DeadThread[9084:2492640] 并发2 end :::<NSThread: 0x604000077d80>{number = 1, name = main}
2017-12-20 13:56:45.573907+0800 DeadThread[9084:2492674] 并发2 index 0 ::: <NSThread: 0x60c000265a40>{number = 3, name = (null)}
2017-12-20 13:56:45.573908+0800 DeadThread[9084:2492675] 并发2 index 10 ::: <NSThread: 0x60400026f000>{number = 4, name = (null)}
2017-12-20 13:56:45.574283+0800 DeadThread[9084:2492674] 并发2 index 1 ::: <NSThread: 0x60c000265a40>{number = 3, name = (null)}
2017-12-20 13:56:45.574344+0800 DeadThread[9084:2492675] 并发2 index 11 ::: <NSThread: 0x60400026f000>{number = 4, name = (null)}
2017-12-20 13:56:45.574420+0800 DeadThread[9084:2492675] 并发2 index 12 ::: <NSThread: 0x60400026f000>{number = 4, name = (null)}
2017-12-20 13:56:45.574422+0800 DeadThread[9084:2492674] 并发2 index 2 ::: <NSThread: 0x60c000265a40>{number = 3, name = (null)}
得到结果:::
1.添加两个 任务代码块,开启两个线程;
2.子线程中代码 不是按顺序执行
2.3 全局主队列::::
2.3.1 主队列 同步 死锁
- (void)syncMain {
NSLog(@"\n\n**************主队列同步,放到主线程会死锁***************\n\n");
// 主队列
dispatch_queue_t queue = dispatch_get_main_queue();
dispatch_sync(queue, ^{
for (int i = 0; i < 3; i++) {
NSLog(@"主队列同步1 %@",[NSThread currentThread]);
}
});
dispatch_sync(queue, ^{
for (int i = 0; i < 3; i++) {
NSLog(@"主队列同步2 %@",[NSThread currentThread]);
}
});
dispatch_sync(queue, ^{
for (int i = 0; i < 3; i++) {
NSLog(@"主队列同步3 %@",[NSThread currentThread]);
}
});
}
死锁原因:::
如果在主线程中运用主队列同步,也就是把任务放到了主线程的队列中。
而同步对于任务是立刻执行的,那么当把第一个任务放进主队列时,它就会立马执行。
可是主线程现在正在处理syncMain方法,任务需要等syncMain执行完才能执行。
syncMain执行到第一个任务的时候,又要等第一个任务执行完才能往下执行第二个和第三个任务。
这样syncMain方法和第一个任务就开始了互相等待,形成了死锁。
2.3.2 主队列 异步
- (void)asyncMain {
NSLog(@"**************主队列异步***************");
// 主队列
dispatch_queue_t queue = dispatch_get_main_queue();
dispatch_async(queue, ^{
for (int i = 0; i < 3; i++) {
NSLog(@"主队列异步1 %@",[NSThread currentThread]);
}
});
dispatch_async(queue, ^{
for (int i = 0; i < 3; i++) {
NSLog(@"主队列异步2 %@",[NSThread currentThread]);
}
});
dispatch_async(queue, ^{
for (int i = 0; i < 3; i++) {
NSLog(@"主队列异步3 %@",[NSThread currentThread]);
}
});
}
执行结果:::
2017-12-20 14:20:01.729412+0800 DeadThread[9257:2636939] **************主队列异步***************
2017-12-20 14:20:01.732208+0800 DeadThread[9257:2636939] 主队列异步1 <NSThread: 0x604000261080>{number = 1, name = main}
2017-12-20 14:20:01.732326+0800 DeadThread[9257:2636939] 主队列异步1 <NSThread: 0x604000261080>{number = 1, name = main}
2017-12-20 14:20:01.732456+0800 DeadThread[9257:2636939] 主队列异步1 <NSThread: 0x604000261080>{number = 1, name = main}
2017-12-20 14:20:01.732726+0800 DeadThread[9257:2636939] 主队列异步2 <NSThread: 0x604000261080>{number = 1, name = main}
2017-12-20 14:20:01.732931+0800 DeadThread[9257:2636939] 主队列异步2 <NSThread: 0x604000261080>{number = 1, name = main}
2017-12-20 14:20:01.733026+0800 DeadThread[9257:2636939] 主队列异步2 <NSThread: 0x604000261080>{number = 1, name = main}
2017-12-20 14:20:01.733128+0800 DeadThread[9257:2636939] 主队列异步3 <NSThread: 0x604000261080>{number = 1, name = main}
2017-12-20 14:20:01.733251+0800 DeadThread[9257:2636939] 主队列异步3 <NSThread: 0x604000261080>{number = 1, name = main}
2017-12-20 14:20:01.733502+0800 DeadThread[9257:2636939] 主队列异步3 <NSThread: 0x604000261080>{number = 1, name = main}
得到结果:::
1. 主队列是个同步队列
2.4 全局并发队列
2.4.1
- (void)globalQueueOne{
NSLog(@"global1 start :::%@",[NSThread currentThread]);
dispatch_queue_t queue = dispatch_queue_create("test", DISPATCH_QUEUE_SERIAL);
dispatch_sync(queue, ^{
for (int i = 0; i < 3; i++) {
NSLog(@"global1 index %d ::: %@",i,[NSThread currentThread]);
}
});
dispatch_sync(queue, ^{
for (int i = 10; i < 13; i++) {
NSLog(@"global1 index %d ::: %@",i,[NSThread currentThread]);
}
});
NSLog(@"global1 end :::%@",[NSThread currentThread]);
}
执行结果:::
2017-12-20 14:27:02.302953+0800 DeadThread[9352:2669397] global1 start :::<NSThread: 0x6000000655c0>{number = 1, name = main}
2017-12-20 14:27:02.303132+0800 DeadThread[9352:2669397] global1 index 0 ::: <NSThread: 0x6000000655c0>{number = 1, name = main}
2017-12-20 14:27:02.303230+0800 DeadThread[9352:2669397] global1 index 1 ::: <NSThread: 0x6000000655c0>{number = 1, name = main}
2017-12-20 14:27:02.303322+0800 DeadThread[9352:2669397] global1 index 2 ::: <NSThread: 0x6000000655c0>{number = 1, name = main}
2017-12-20 14:27:02.303397+0800 DeadThread[9352:2669397] global1 index 10 ::: <NSThread: 0x6000000655c0>{number = 1, name = main}
2017-12-20 14:27:02.303467+0800 DeadThread[9352:2669397] global1 index 11 ::: <NSThread: 0x6000000655c0>{number = 1, name = main}
2017-12-20 14:27:02.303557+0800 DeadThread[9352:2669397] global1 index 12 ::: <NSThread: 0x6000000655c0>{number = 1, name = main}
2017-12-20 14:27:02.303638+0800 DeadThread[9352:2669397] global1 end :::<NSThread: 0x6000000655c0>{number = 1, name = main}
2.4.2
- (void)globalQueueTwo{
NSLog(@"global2 start :::%@",[NSThread currentThread]);
dispatch_queue_t queue = dispatch_queue_create("test", DISPATCH_QUEUE_CONCURRENT);
dispatch_async(queue, ^{
for (int i = 0; i < 3; i++) {
NSLog(@"global2 index %d ::: %@",i,[NSThread currentThread]);
}
});
dispatch_async(queue, ^{
for (int i = 10; i < 13; i++) {
NSLog(@"global2 index %d ::: %@",i,[NSThread currentThread]);
}
});
NSLog(@"global2 end :::%@",[NSThread currentThread]);
}
执行结果:::
2017-12-20 14:28:27.498062+0800 DeadThread[9382:2678820] global2 start :::<NSThread: 0x600000076700>{number = 1, name = main}
2017-12-20 14:28:27.498208+0800 DeadThread[9382:2678820] global2 end :::<NSThread: 0x600000076700>{number = 1, name = main}
2017-12-20 14:28:27.498250+0800 DeadThread[9382:2679707] global2 index 0 ::: <NSThread: 0x60c0000779c0>{number = 3, name = (null)}
2017-12-20 14:28:27.498260+0800 DeadThread[9382:2679706] global2 index 10 ::: <NSThread: 0x60400007e800>{number = 4, name = (null)}
2017-12-20 14:28:27.498555+0800 DeadThread[9382:2679707] global2 index 1 ::: <NSThread: 0x60c0000779c0>{number = 3, name = (null)}
2017-12-20 14:28:27.498692+0800 DeadThread[9382:2679706] global2 index 11 ::: <NSThread: 0x60400007e800>{number = 4, name = (null)}
2017-12-20 14:28:27.498710+0800 DeadThread[9382:2679707] global2 index 2 ::: <NSThread: 0x60c0000779c0>{number = 3, name = (null)}
2017-12-20 14:28:27.498753+0800 DeadThread[9382:2679706] global2 index 12 ::: <NSThread: 0x60400007e800>{number = 4, name = (null)}
iOS 多线程的简单理解(2) 队列 :串行 ,并行,MainQueue,GlobalQueue的更多相关文章
- ios多线程操作(五)—— GCD串行队列与并发队列
GCD的队列能够分为2大类型,分别为串行队列和并发队列 串行队列(Serial Dispatch Queue): 一次仅仅调度一个任务,队列中的任务一个接着一个地运行( ...
- iOS 多线程的简单理解(3)执行方式 + 执行对列 的组合
通过对前面两偏线程理解的总结,自己对线程的理解也逐渐加深,梳理的清晰起来…… 通常在使用线程 的时候,都是要用到 执行对列,执行方式,执行任务, 现在开始新一轮的深入 3. 1. 1 同步 + 串行 ...
- iOS:GCD理解1(串行-并行、同步-异步)
1.获取并行.创建串行 队列 1-1).获取 并行(全局) 队列 ,DISPATCH_QUEUE_PRIORITY_DEFAULT 为默认优先级. dispatch_queue_t global_qu ...
- iOS 多线程的简单理解(4) 线程锁的简单使用
要用到多线程 ,就不得不考虑,线程之间的交互,线程是否安全 推荐一个原文链接 是关于 线程锁的基本使用的 http://blog.csdn.net/qq_30513483/article/detai ...
- iOS 多线程的简单理解(1) 方式 :同步 异步
最近遇到特别糟糕的面试,过程中提到多次对多线程的处理问题,并没有很好的给予答复和解决,所以在这里做个简单的备案: 期望能更加了解和熟练使用 多线程技术: 下面都是自己的总结,如果存在不对的,或者不足, ...
- IOS多线程知识总结/队列概念/GCD/串行/并行/同步/异步
进程:正在进行中的程序被称为进程,负责程序运行的内存分配;每一个进程都有自己独立的虚拟内存空间: 线程:线程是进程中一个独立的执行路径(控制单元);一个进程中至少包含一条线程,即主线程. 队列:dis ...
- iOS多线程——同步异步串行并行
串行并行异步同步的概念很容易让人混淆,关于这几个概念我在第一篇GCD中有解释,但是还不够清晰,所以这里重写一篇博客专门对这几个概念进行区分: 先说一下队列和任务: (1)队列分为串行和并行,任务的执行 ...
- 【iOS开发-91】GCD的同步异步串行并行、NSOperation和NSOperationQueue一级用dispatch_once实现单例
(1)GCD实现的同步异步.串行并行. --同步sync应用场景:用户登录,利用堵塞 --串行异步应用场景:下载等耗时间的任务 /** * 由于是异步.所以开通了子线程.可是由于是串行队列,所以仅仅须 ...
- GCD的同步异步串行并行、NSOperation和NSOperationQueue一级用dispatch_once实现单例
转:http://www.tuicool.com/articles/NVVnMn (1)GCD实现的同步异步.串行并行. ——同步sync应用场景:用户登录,利用阻塞 ——串行异步应用场景:下载等耗时 ...
随机推荐
- Oracle 日期型 将timestamp类型转换为date类型
Oracle将timestamp类型转换为date类型有三种方法 1.使用to_char先转为字符型,在使用to_date再转为日期型 select to_date(to_char(systimest ...
- MongoDB 复制集监控
1.复制集状态查询:rs.status() 2.查看当前副本集oplog状态:rs.printReplicationInfo() 3.查看复制延迟:rs.printSlaveReplicationIn ...
- PHP获取POST数据的三种方式
一.PHP获取POST数据的几种方法 方法1.最常见的方法是:$_POST['fieldname']; 说明:只能接收Content-Type: application/x-www-form-urle ...
- 洛谷 P1190 接水问题 题解
P1190 接水问题 题目描述 学校里有一个水房,水房里一共装有 \(m\) 个龙头可供同学们打开水,每个龙头每秒钟的供水量相等,均为1. 现在有 \(n\) 名同学准备接水,他们的初始接水顺序已经确 ...
- 【概率论】5-9:多项式分布(The Multinomial Distributions)
title: [概率论]5-9:多项式分布(The Multinomial Distributions) categories: - Mathematic - Probability keywords ...
- Pytest权威教程-更改标准(Python)测试发现
目录 更改标准(Python)测试发现 在测试收集过程中忽略路径 测试期间收集的测试取消 保留从命令行指定的重复路径 更改目录递归 更改命名约定 将cmdline参数解释为Python包 找出收集的东 ...
- 在Android Studio中找不到AppCompatActivity解决方案
在创建新的.java文件时,要导入父类中的 AppCompatActivity,报错,无法找到这个父类. 解决方案: 1.先找到“project structure”,然后app--Depende ...
- RNN梯度消失和爆炸的原因 以及 LSTM如何解决梯度消失问题
RNN梯度消失和爆炸的原因 经典的RNN结构如下图所示: 假设我们的时间序列只有三段, 为给定值,神经元没有激活函数,则RNN最简单的前向传播过程如下: 假设在t=3时刻,损失函数为 . 则对于一 ...
- Chapter Two
Web容器配置 ~Tomcat配置 server.port配置了Web容器的端口号 error.path配置了当项目出错时跳转去的页面 session.timeout配置了session失效的时间 c ...
- spark学习记录-2
spark编程模型 ====== spark如何工作的? 1.user应用产生RDD,操作变形,运行action操作 2.操作的结果在有向无环图DAG中 3.DAG被编译到stages阶段中 4.每一 ...