本文翻译自官网: Time Attributes   https://ci.apache.org/projects/flink/flink-docs-release-1.9/dev/table/streaming/time_attributes.html

Flink Table Api & SQL 翻译目录

Flink能够根据不同的时间概念处理流数据。

  • Process time 是指正在执行相应操作的机器的系统时间(也称为“挂钟时间”)。
  • Event time 是指基于附在每行上的时间戳对流数据进行处理。时间戳可以在事件发生时进行编码。
  • Ingestion time 是事件进入Flink的时间;在内部,它的处理类似于事件时间。

有关Flink中时间处理的更多信息,请参见有关事件时间和水印的介绍。

本页说明如何在Flink的Table API和SQL中为基于时间的操作定义时间属性。

时间属性简介

Table APISQL中的基于时间的操作(例如窗口)都需要有关时间概念及其起源的信息。因此,表可以提供逻辑时间属性,以指示时间并访问表程序中的相应时间戳。

时间属性可以是每个表结构的一部分。它们是从DataStream创建表时定义的,或者是在使用TableSource时预定义的。一旦在开始定义了时间属性,就可以将其作为字段引用,并可以在基于时间的操作中使用。

只要时间属性没有被修改并且只是从查询的一部分转发到另一部分,它仍然是有效的时间属性。时间属性的行为类似于常规时间戳,可以进行访问以进行计算。常规时间戳记不能与Flink的时间和水印系统配合使用,因此不能再用于基于时间的操作。

表程序要求已为流环境指定了相应的时间特征:

val env = StreamExecutionEnvironment.getExecutionEnvironment

env.setStreamTimeCharacteristic(TimeCharacteristic.ProcessingTime) // default

// alternatively:
// env.setStreamTimeCharacteristic(TimeCharacteristic.IngestionTime)
// env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime)

处理时间

处理时间允许表程序根据本地计算机的时间产生结果。这是最简单的时间概念,但不提供确定性。它既不需要时间戳提取也不需要水印生成。

有两种定义处理时间属性的方法。

在数据流到表的转换期间

在结构定义期间,使用.proctime属性定义了处理时间属性。时间属性只能通过其他逻辑字段扩展物理结构。因此,只能在结构定义的末尾定义它。

val stream: DataStream[(String, String)] = ...

// declare an additional logical field as a processing time attribute
val table = tEnv.fromDataStream(stream, 'UserActionTimestamp, 'Username, 'Data, 'UserActionTime.proctime) val windowedTable = table.window(Tumble over 10.minutes on 'UserActionTime as 'userActionWindow)

使用TableSource

处理时间属性由实现DefinedProctimeAttribute接口的TableSource定义。逻辑时间属性附加到由TableSource的返回类型定义的物理结构。

class UserActionSource extends StreamTableSource[Row] with DefinedProctimeAttribute {

    override def getReturnType = {
val names = Array[String]("Username" , "Data")
val types = Array[TypeInformation[_]](Types.STRING, Types.STRING)
Types.ROW(names, types)
} override def getDataStream(execEnv: StreamExecutionEnvironment): DataStream[Row] = {
// create stream
val stream = ...
stream
} override def getProctimeAttribute = {
// field with this name will be appended as a third field
"UserActionTime"
}
} // register table source
tEnv.registerTableSource("UserActions", new UserActionSource) val windowedTable = tEnv
.scan("UserActions")
.window(Tumble over 10.minutes on 'UserActionTime as 'userActionWindow)

事件时间

事件时间允许表程序根据每个记录中包含的时间来产生结果。即使在无序事件或迟发事件的情况下,这也可以提供一致的结果。从持久性存储中读取记录时,还可以确保表程序的可重播结果。

此外,事件时间允许批处理和流环境中的表程序使用统一语法。流环境中的时间属性可以是批处理环境中记录的常规字段。

为了处理乱序事件并区分流中的按时事件和延迟事件,Flink需要从事件中提取时间戳并及时进行某种处理(就是水印)。

可以在DataStream到Table的转换期间或使用TableSource 定义事件时间属性。

在DataStream 到 Table 的转换期间

在结构定义期间,事件时间属性是使用.rowtime属性定义的。必须在转换的DataStream中分配时间戳和水印

将 DataStream 转换为 Table 时,有两种定义时间属性的方法。根据指定的.rowtime字段名称是否存在于DataStream的结构中,timestamp字段为

  • 作为新字段附加到结构
  • 替换现有字段。

无论哪种情况,事件时间时间戳字段都将保留DataStream事件时间 时间戳的值。

// Option 1:

// extract timestamp and assign watermarks based on knowledge of the stream
val stream: DataStream[(String, String)] = inputStream.assignTimestampsAndWatermarks(...) // declare an additional logical field as an event time attribute
val table = tEnv.fromDataStream(stream, 'Username, 'Data, 'UserActionTime.rowtime) // Option 2: // extract timestamp from first field, and assign watermarks based on knowledge of the stream
val stream: DataStream[(Long, String, String)] = inputStream.assignTimestampsAndWatermarks(...) // the first field has been used for timestamp extraction, and is no longer necessary
// replace first field with a logical event time attribute
val table = tEnv.fromDataStream(stream, 'UserActionTime.rowtime, 'Username, 'Data) // Usage: val windowedTable = table.window(Tumble over 10.minutes on 'UserActionTime as 'userActionWindow)

使用TableSource

事件时间属性由实现了DefinedRowtimeAttributes接口的TableSource定义。getRowtimeAttributeDescriptors()方法返回用于描述时间属性最终名称的RowtimeAttributeDescriptor列表,用于导出属性值的时间戳提取器以及与该属性关联的水印策略。

请确保由getDataStream()方法返回的DataStream与定义的时间属性对齐。仅当定义了StreamRecordTimestamp时间戳提取器时,才考虑DataStream的时间戳(由TimestampAssigner分配的时间戳)。仅当定义了PreserveWatermarks水印策略时,才会保留DataStream的水印。 否则,仅TableSource的rowtime属性的值相关。

// define a table source with a rowtime attribute
class UserActionSource extends StreamTableSource[Row] with DefinedRowtimeAttributes { override def getReturnType = {
val names = Array[String]("Username" , "Data", "UserActionTime")
val types = Array[TypeInformation[_]](Types.STRING, Types.STRING, Types.LONG)
Types.ROW(names, types)
} override def getDataStream(execEnv: StreamExecutionEnvironment): DataStream[Row] = {
// create stream
// ...
// assign watermarks based on the "UserActionTime" attribute
val stream = inputStream.assignTimestampsAndWatermarks(...)
stream
} override def getRowtimeAttributeDescriptors: util.List[RowtimeAttributeDescriptor] = {
// Mark the "UserActionTime" attribute as event-time attribute.
// We create one attribute descriptor of "UserActionTime".
val rowtimeAttrDescr = new RowtimeAttributeDescriptor(
"UserActionTime",
new ExistingField("UserActionTime"),
new AscendingTimestamps)
val listRowtimeAttrDescr = Collections.singletonList(rowtimeAttrDescr)
listRowtimeAttrDescr
}
} // register the table source
tEnv.registerTableSource("UserActions", new UserActionSource) val windowedTable = tEnv
.scan("UserActions")
.window(Tumble over 10.minutes on 'UserActionTime as 'userActionWindow)

欢迎关注Flink菜鸟公众号,会不定期更新Flink(开发技术)相关的推文

【翻译】Flink Table Api & SQL —Streaming 概念 ——时间属性的更多相关文章

  1. 【翻译】Flink Table Api & SQL —Streaming 概念 ——动态表

    本文翻译自官网:Flink Table Api & SQL 动态表 https://ci.apache.org/projects/flink/flink-docs-release-1.9/de ...

  2. 【翻译】Flink Table Api & SQL —Streaming 概念 ——在持续查询中 Join

    本文翻译自官网 :  Joins in Continuous Queries   https://ci.apache.org/projects/flink/flink-docs-release-1.9 ...

  3. 【翻译】Flink Table Api & SQL —Streaming 概念 —— 时态表

    本文翻译自官网: Temporal Tables https://ci.apache.org/projects/flink/flink-docs-release-1.9/dev/table/strea ...

  4. 【翻译】Flink Table Api & SQL ——Streaming 概念

    本文翻译自官网:Streaming 概念  https://ci.apache.org/projects/flink/flink-docs-release-1.9/dev/table/streamin ...

  5. 【翻译】Flink Table Api & SQL —Streaming 概念 —— 表中的模式匹配 Beta版

    本文翻译自官网:Detecting Patterns in Tables Beta  https://ci.apache.org/projects/flink/flink-docs-release-1 ...

  6. 【翻译】Flink Table Api & SQL —Streaming 概念 —— 查询配置

    本文翻译自官网:Query Configuration  https://ci.apache.org/projects/flink/flink-docs-release-1.9/dev/table/s ...

  7. 【翻译】Flink Table Api & SQL — 流概念

    本文翻译自官网:Streaming Concepts  https://ci.apache.org/projects/flink/flink-docs-release-1.9/dev/table/st ...

  8. Flink Table Api & SQL 翻译目录

    Flink 官网 Table Api & SQL  相关文档的翻译终于完成,这里整理一个安装官网目录顺序一样的目录 [翻译]Flink Table Api & SQL —— Overv ...

  9. 【翻译】Flink Table Api & SQL —— 概念与通用API

    本文翻译自官网:https://ci.apache.org/projects/flink/flink-docs-release-1.9/dev/table/common.html Flink Tabl ...

随机推荐

  1. JAVA设计模式之工厂模式—Factory Pattern

    1.工厂模式简介 工厂模式用于对象的创建,使得客户从具体的产品对象中被解耦. 2.工厂模式分类 这里以制造coffee的例子开始工厂模式设计之旅. 我们知道coffee只是一种泛举,在点购咖啡时需要指 ...

  2. php的插入排序

    感觉在这个数据量上,排入比冒泡要好很多呢~ 代码: <?php /** * 直接插入排序(类比抓牌) * 原理:每次从无序列表中取出第一个元素,把他插入到有序表中的合适位置,使有序表仍然有序 * ...

  3. 第七篇:ORM框架SQLAlchemy

    阅读目录 一 介绍 二 创建表 三 增删改查 四 其他查询相关 五 正查.反查 一 介绍 SQLAlchemy是Python编程语言下的一款ORM框架,该框架建立在数据库API之上,使用关系对象映射进 ...

  4. selenium获取元素信息方法(转载)

    1.获取当前页面的Url函数 方法:current_url 实例: driver.current_url 2.获取元素坐标 方法:location 解释:首先查找到你要获取元素的,然后调用locati ...

  5. c语言的可变参数实例

    可变参数函数实现的步骤如下: 1.在函数中创建一个va_list类型变量 2.使用va_start对其进行初始化 3.使用va_arg访问参数值 4.使用va_end完成清理工作 接下来我们来实现一个 ...

  6. git工具免密拉取、推送

    很苦恼每次都要配置明文密码才能正常工作 其实也可以配置成非明文 打开控制面板 →用户账号 管理 Windows凭证 对应修改响应网址即可  

  7. LeetCode 802. Find Eventual Safe States

    原题链接在这里:https://leetcode.com/problems/find-eventual-safe-states/ 题目: In a directed graph, we start a ...

  8. gin内置验证器使用

    gin内置验证器使用 func TopicUrl(f1 validator.FieldLevel) bool { return true //返回true表示验证成功 } func main(){ r ...

  9. go选项模式

    package main import "fmt" type optionClient func(*options) func setAge(a int) optionClient ...

  10. 超级好用的excel导出方法,比phpexcel快n倍,并且无乱码

    public function exportToExcel($filename, $tileArray=[], $dataArray=[]){ ini_set('memory_limit','512M ...