[LeetCode] 727. Minimum Window Subsequence 最小窗口子序列
Given strings S and T, find the minimum (contiguous) substring W of S, so that T is a subsequenceof W.
If there is no such window in S that covers all characters in T, return the empty string "". If there are multiple such minimum-length windows, return the one with the left-most starting index.
Example 1:
Input:
S = "abcdebdde", T = "bde"
Output: "bcde"
Explanation:
"bcde" is the answer because it occurs before "bdde" which has the same length.
"deb" is not a smaller window because the elements of T in the window must occur in order.
Note:
- All the strings in the input will only contain lowercase letters.
- The length of
Swill be in the range[1, 20000]. - The length of
Twill be in the range[1, 100].
给定字符串S和T,在S中寻找最小连续子串W,使得T是W的子序列。如果没有找到返回"",如果找到多个最小长度的子串,返回左 index 最小的。
解法1:暴力搜索brute force,对于每一个s[i],从s[0]到s[i]扫描,看是否按顺序满足目标字符。 显然要超时,不是题目要求的。
解法2: 动态规划DP, 二维数组dp[i][j]表示T[0...i]在S中找到的起始下标index,使得S[index, j]满足目前T[0...i]。首先找到能满足满足T中第一个字符T[0]的S中的字符下标存入dp[0][j],也就是满足第一个字符要求一定是从这些找到的字符开始的。然后在开始找第二个字符T[1],扫到的字符dp[j]存有index,说明可以从这里记录的index开始,找到等于T[1]的S[j]就把之前那个index存进来,说明从这个index到j满足T[0..1],一直循环,直到T中的i个字符找完。如果此时dp[i][j]中有index,说明S[index, j]满足条件,如有多个输出最先找到的。
State: dp[i][j],表示在S中找到的起始下标 index ,使得 S[index...j] 满足目前 T[0...i] 是其子序列。
function: dp[i+1][k] = dp[i][j] if S[k] = T[i+1] , 如果查看到第i+1行(也就是第 T[i+1] 的字符),如果满足S[k] = T[i+1],就把上一行找到的index赋给它。
Initialize: dp[0][j] = j if S[j] = T[0] , 二维数组的第一行,如果字符S[j] = T[0], 就把S[j]的index(就是j)付给它。其他元素均为 None 或者 -1。
Return: dp[len(T) - 1][j], if dp[len(T) - 1][j] != None, 返回最小的。如果没有返回 ""
由于我们只用到前一行的值,所以可以只用2行的二维数组,每一个循环更新其中的一行。可以用 j % 2 来往复使用。
Java:
class Solution {
public String minWindow(String S, String T) {
int m = T.length(), n = S.length();
int[][] dp = new int[m + 1][n + 1];
for (int j = 0; j <= n; j++) {
dp[0][j] = j + 1;
}
for (int i = 1; i <= m; i++) {
for (int j = 1; j <= n; j++) {
if (T.charAt(i - 1) == S.charAt(j - 1)) {
dp[i][j] = dp[i - 1][j - 1];
} else {
dp[i][j] = dp[i][j - 1];
}
}
}
int start = 0, len = n + 1;
for (int j = 1; j <= n; j++) {
if (dp[m][j] != 0) {
if (j - dp[m][j] + 1 < len) {
start = dp[m][j] - 1;
len = j - dp[m][j] + 1;
}
}
}
return len == n + 1 ? "" : S.substring(start, start + len);
}
}
Java: brute force, Time O(s*t), Space O(s*t)
class Solution {
public String minWindow(String S, String T) {
int min = -1, idx = -1;
char[] Tc = T.toCharArray();
char[] Sc = S.toCharArray();
for(int i = 0;i < S.length();i++){
if(Sc[i] != Tc[0]) continue;
int len = check(Tc,Sc,i);
if(len <= 0) break;
if(min == -1 || len < min){
idx = i;
min = len;
}
}
if(min == -1) return "";
return S.substring(idx, idx + min);
}
public int check(char[] Tc, char[] Sc, int start){
int i = start, j = 0;
while(i < Sc.length && j < Tc.length){
if(Sc[i] == Tc[j]) j++;
i++;
}
if(j == Tc.length) return i - start;
return -1;
}
}
Java: DP, Time O(s*t), Space O(s*2)
class Solution {
public String minWindow(String S, String T) {
int[][] dp = new int[2][S.length()];
for (int i = 0; i < S.length(); ++i)
dp[0][i] = S.charAt(i) == T.charAt(0) ? i : -1;
for (int j = 1; j < T.length(); ++j) {
int last = -1;
Arrays.fill(dp[j & 1], -1);
for (int i = 0; i < S.length(); ++i) {
if (last >= 0 && S.charAt(i) == T.charAt(j))
dp[j & 1][i] = last;
if (dp[j & 1][i] >= 0)
last = dp[j & 1][i];
}
}
int start = 0, end = S.length();
for (int e = 0; e < S.length(); ++e) {
int s = dp[T.length() & 1][e];
if (s >= 0 && e - s < end - start) {
start = s;
end = e;
}
}
return end < S.length() ? S.substring(start, end+1) : "";
}
}
Java: Time O(s*t), Space O(s*t)
class Solution {
public String minWindow(String S, String T) {
int[][] dp = new int[T.length()][S.length()];
for(int i = 0; i < T.length(); i++) {
for(int j = 0; j < S.length(); j++) {
dp[i][j] = -1;
}
}
for(int j = 0; j < S.length(); j++) {
dp[0][j] = (S.charAt(j) == T.charAt(0)) ? j : -1;
}
for(int i = 1; i < T.length(); i++) {
int last = -1;
for(int j = 0; j < S.length(); j++) {
if(last >= 0 && S.charAt(j) == T.charAt(i)) {
dp[i][j] = last;
}
if(dp[i - 1][j] >= 0) {
last = dp[i - 1][j];
}
}
}
int start = -1;
int length = Integer.MAX_VALUE;
for(int j = 0; j < S.length(); j++) {
if(dp[T.length() - 1][j] >= 0 && (j - dp[T.length() - 1][j] + 1 < length)) {
start = dp[T.length() - 1][j];
length = j - dp[T.length() - 1][j] + 1;
}
}
return (start == -1) ? "" : S.substring(start, start + length);
}
}
Python: Time O(s*t), Space O(s*2)
class Solution(object):
def minWindow(self, S, T):
dp = [[None for _ in xrange(len(S))] for _ in xrange(2)]
for j, c in enumerate(S):
if c == T[0]:
dp[0][j] = j for i in xrange(1, len(T)):
prev = None
dp[i%2] = [None] * len(S)
for j, c in enumerate(S):
if prev is not None and c == T[i]:
dp[i%2][j] = prev
if dp[(i-1)%2][j] is not None:
prev = dp[(i-1)%2][j] start, end = 0, len(S)
for j, i in enumerate(dp[(len(T)-1)%2]):
if i >= 0 and j-i < end-start:
start, end = i, j
return S[start:end+1] if end < len(S) else ""
Python:
class Solution(object):
def minWindow(self, S, T):
"""
:type S: str
:type T: str
:rtype: str
"""
ans = ''
ls, lt = len(S), len(T)
dp = [-1] * lt
for x in range(ls):
for y in range(lt - 1, -1, -1):
if T[y] == S[x]:
dp[y] = dp[y - 1] if y else x
if y == lt - 1 and dp[-1] > -1:
nlen = x - dp[-1] + 1
if not ans or nlen < len(ans):
ans = S[dp[-1] : x+1]
return ans
C++:
/*
* At time j, for each position e in S (e for end), let's remember
* the largest index cur[e] = s (for start) so that S[s: e+1] has
* T[:j+1] as a subsequence, and -1 otherwise if it isn't possible.
*/
class Solution {
public:
string minWindow(string S, string T) {
int sn = S.size(), tn = T.size();
vector<int> memo(sn, -1); for (int i = 0; i < sn; ++i) {
if (T[0] == S[i]) {
memo[i] = i;
}
} for (int j = 1; j < tn; ++j) {
vector<int> swap(sn, -1);
int currStart = -1; for (int i = 0; i < sn; ++i) {
if (S[i] == T[j] && currStart >= 0) { // T[:j+1] found
swap[i] = currStart;
} if (memo[i] >= 0) {
currStart = memo[i];
}
}
std::swap(memo, swap);
} int BAR = sn + 1, minLen = BAR;
int start = 0; for (int e = 0; e < sn; ++e){
if (memo[e] >= 0) {
int currLen = e + 1 - memo[e];
if (currLen < minLen) {
start = memo[e];
minLen = currLen;
}
}
}
return minLen == BAR ? "" : S.substr(start, minLen);
}
};
C++:
class Solution {
public:
string minWindow(string s, string t) {
int ns = s.size(), nt= t.size();
int dp[ns+1][nt+1] = {};
const int mxx = ns + 1;
//for(int i=0;i<=ns;i++) dp[i][0]=i;
for (int i = 0 ; i <= ns; ++i) {
for (int j = 1; j <= nt; ++j) {
dp[i][j] = mxx;
if (i) {
dp[i][j] = min(dp[i][j], 1 + dp[i-1][j]);
if (s[i-1] == t[j-1]) dp[i][j] = min(dp[i][j], 1 + dp[i-1][j-1]);
}
}
}
int ans = ns + 1, x = -1;
for (int i = 0; i <=ns; ++i)
if (dp[i][nt] < ans) {
x = i;
ans = dp[i][nt];
}
if (x < 0) return "";
return s.substr(x-ans,ans);
}
};
类似题目:
[LeetCode] 3.Longest Substring Without Repeating Characters 最长无重复子串
[LeetCode] 76. Minimum Window Substring 最小窗口子串
All LeetCode Questions List 题目汇总
[LeetCode] 727. Minimum Window Subsequence 最小窗口子序列的更多相关文章
- [LeetCode] 727. Minimum Window Subsequence 最小窗口序列
Given strings S and T, find the minimum (contiguous) substring W of S, so that T is a subsequence of ...
- [LeetCode] Minimum Window Subsequence 最小窗口序列
Given strings S and T, find the minimum (contiguous) substring W of S, so that T is a subsequence of ...
- [LeetCode] 76. Minimum Window Substring 最小窗口子串
Given a string S and a string T, find the minimum window in S which will contain all the characters ...
- LeetCode——727.Minimum Window Subsequence
一.题目链接:https://leetcode.com/problems/minimum-window-substring/ 二.题目大意: 给定两个字符串S和T,要求从S中找出包含T中所有字母的最短 ...
- [LeetCode] Minimum Window Substring 最小窗口子串
Given a string S and a string T, find the minimum window in S which will contain all the characters ...
- LC 727. Minimum Window Subsequence 【lock,hard】
Given strings S and T, find the minimum (contiguous) substring W of S, so that T is a subsequenceof ...
- [leetcode]76. Minimum Window Substring最小字符串窗口
Given a string S and a string T, find the minimum window in S which will contain all the characters ...
- [LeetCode] 239. Sliding Window Maximum 滑动窗口最大值
Given an array nums, there is a sliding window of size k which is moving from the very left of the a ...
- [Leetcode] minimum window substring 最小字符窗口
Given a string S and a string T, find the minimum window in S which will contain all the characters ...
随机推荐
- 如何让VS像CB一样使用
之前用VS,先是完成了GLUT库下的opengl使用: 然后得知GLUT有些过时,又按照教程接触了GLFW库下,反正对我来说是有些复杂. 今天正式试一试用VS来写ACM的题目,发现不能定义string ...
- “Another git process seems to be running in this repository...”Git此问题解决
Git中显示:Another git process seems to be running in this repository, e.g.an editor opened by 'git comm ...
- 安装cuda及之后更新环境变量的方法
安装参考:https://www.cnblogs.com/fanfzj/p/8521728.html 更新环境变量: 将 CUDA.CUPTI 和 cuDNN 安装目录添加到 %PATH% 环境变量中 ...
- FFT版题 [51 Nod 1028] 大数乘法
题目链接:51 Nod 传送门 数的长度为10510^5105,乘起来后最大长度为2×1052\times10^52×105 由于FFT需要把长度开到222的次幂,所以不能只开到2×1052\time ...
- CSP-J2019游记&解题报告
考前一天晚上失眠.......(其实主要不是因为考试的原因) 很幸运,我们学校就是一个考点,本场作战,应该有一点加持吧. 上午在家复习,看到一篇关于PN532模拟小米手环加密卡的文章,于是,,,,,, ...
- inflection point
http://blog.thefirehoseproject.com/posts/learn-to-code-and-be-self-reliant/ kill will develop 1.repe ...
- tensorflow 2.0 学习(四)
这次的mnist学习加入了测试集,看看学习的准确率,代码如下 # encoding: utf-8 import tensorflow as tf import matplotlib.pyplot as ...
- 洛谷 P2512 [HAOI2008]糖果传递 题解
每日一题 day47 打卡 Analysis 首先,最终每个小朋友的糖果数量可以计算出来,等于糖果总数除以n,用ave表示. 假设标号为i的小朋友开始有Ai颗糖果,Xi表示第i个小朋友给了第i-1个小 ...
- learning java Charset 查看支持的字符集类型
import java.nio.charset.Charset; import java.util.SortedMap; public class CharsetTest { public stati ...
- 2019.12.11 java数组练习
class AmHW { public static void main(String[] args) { /* 统计一个公司三个销售小组中每个小组的总 销售额以及整个公司的销售额.如下所示 第一小组 ...