A.3*3讨论即可,注意正方形套圆套三角形只有6个点。

 #include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define rep(i,l,r) for (int i=(l); i<=(r); i++)
typedef long long ll;
using namespace std; const int N=;
int n,ans,a[N]; int main(){
scanf("%d",&n);
rep(i,,n) scanf("%d",&a[i]);
rep(i,,n){
if ((a[i-]== && a[i]==) || (a[i-]== && a[i]==)){ puts("Infinite"); return ; }
if ((a[i-]== && a[i]==) || (a[i-]== && a[i]==)) ans+=;
if ((a[i-]== && a[i]==) || (a[i-]== && a[i]==)) ans+=;
if (i>= && a[i-]== && a[i-]== && a[i]==) ans--;
}
printf("Finite\n%d\n",ans);
return ;
}

A

B.相同字符显然放在一起,先统计一共有几种字符。若一种,直接输出。若两种,若两字符相邻则无解否则直接输出。若三种,若三字符均相邻则无解,否则132或213总有一种可行。若四种,3142即可。四种以上,前一半和后一半间隔着输出即可。如n=6时输出142536。

 #include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define rep(i,l,r) for (int i=(l); i<=(r); i++)
typedef long long ll;
using namespace std; const int N=;
char s[N];
int T,n,cnt[N],w[N]; int main(){
for (scanf("%d",&T); T--; ){
scanf("%s",s+); n=strlen(s+); int d=;
rep(i,,) cnt[i]=;
rep(i,,n) cnt[s[i]-'a']++;
rep(i,,) if (cnt[i]) w[++d]=i;
if (d==){ puts(s+); continue; }
if (d==){
if (w[]+==w[]) puts("No answer");
else{
rep(i,,cnt[w[]]) putchar(w[]+'a');
rep(i,,cnt[w[]]) putchar(w[]+'a'); puts("");
}
continue;
}
if (d==){
if (w[]+==w[]){
if (w[]+==w[]) puts("No answer");
else{
rep(i,,cnt[w[]]) putchar(w[]+'a');
rep(i,,cnt[w[]]) putchar(w[]+'a');
rep(i,,cnt[w[]]) putchar(w[]+'a'); puts("");
}
}else{
rep(i,,cnt[w[]]) putchar(w[]+'a');
rep(i,,cnt[w[]]) putchar(w[]+'a');
rep(i,,cnt[w[]]) putchar(w[]+'a'); puts("");
}
continue;
}
if (d==){
rep(i,,cnt[w[]]) putchar(w[]+'a');
rep(i,,cnt[w[]]) putchar(w[]+'a');
rep(i,,cnt[w[]]) putchar(w[]+'a');
rep(i,,cnt[w[]]) putchar(w[]+'a');
puts("");
continue;
}
rep(i,,(d+)/){
rep(j,,cnt[w[i]]) putchar(w[i]+'a');
if (i+(d+)/<=d) rep(j,,cnt[w[i+(d+)/]]) putchar(w[i+(d+)/]+'a');
}
puts("");
}
return ;
}

B

C.二分答案,设二分值为mid,则将i和n-mid+i依次配对,判断配对数是否>=mid。

 #include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define rep(i,l,r) for (int i=(l); i<=(r); i++)
typedef long long ll;
using namespace std; const int N=;
int n,z,ans,a[N],b[N]; bool chk(int mid){
int res=;
rep(i,,mid) if (a[n-mid+i]-a[i]>=z) res++;
return res>=mid;
} int main(){
scanf("%d%d",&n,&z);
rep(i,,n) scanf("%d",&a[i]);
sort(a+,a+n+); int L=,R=n/;
while (L<R){
int mid=(L+R+)>>;
if (chk(mid)) L=mid; else R=mid-;
}
printf("%d\n",L);
return ;
}

C

D.一种方法是,先对每个点BFS出它所在1连通块的大小bel[x],然后再对每个点BFS出它所在0连通块并将块中的点的bel累加起来得到答案。

还有一种是树上DP,f[x][0/1]表示x往下只走0边/先走0边再走1边,的方案数。g[x][0/1]表示x往下只走1边/先走1边再走0边,的方案数。在每个点上枚举有多少以它为路径最高点的合法路径。

 #include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define rep(i,l,r) for (int i=(l); i<=(r); i++)
typedef long long ll;
using namespace std; const int N=; int n,p[N],t;
ll f[N][],g[N][],ans;
struct data{int to,nxt,len; }E[N<<];
void add(int x,int y,int z){t++;E[t].to=y,E[t].nxt=p[x],E[t].len=z,p[x]=t;} void dfs(int k,int from){
f[k][]=; g[k][]=;
for (int i=p[k];i;i=E[i].nxt)
if (E[i].to!=from){
dfs(E[i].to,k);
if (E[i].len==) f[k][]+=f[E[i].to][];
else f[k][]+=f[E[i].to][]+f[E[i].to][];
if (E[i].len==) g[k][]+=g[E[i].to][];
else g[k][]+=g[E[i].to][]+g[E[i].to][];
}
for (int i=p[k];i;i=E[i].nxt)
if (E[i].to!=from){
int x=f[k][],y=f[k][];
if (E[i].len==) x-=f[E[i].to][];
else y-=f[E[i].to][]+f[E[i].to][];
if (E[i].len==) ans+=x*g[E[i].to][];
ans+=x*g[E[i].to][];
if (E[i].len==) ans+=y*g[E[i].to][];
}
ans+=f[k][]+f[k][]-;
} int main(){
scanf("%d",&n);
rep(i,,n){
int x,y,z; scanf("%d%d%d",&x,&y,&z);
add(x,y,z),add(y,x,z);
}
dfs(,); cout<<ans<<endl;;
return ;
}

方法二

E.从小到大插入p,每次以当前p[x]为区间最大值的合法区间数,就是x左边的已插入的连续段和右边已插入的连续段的信息合并。这个可以用set启发式合并支持查询与合并,为了快速寻找某个位置被合并到哪了需要用到并查集,复杂度两个log。

 #include<set>
#include<cstdio>
#include<algorithm>
#define rep(i,l,r) for (int i=(l); i<=(r); i++)
using namespace std; const int N=;
int n,ans,a[N],id[N],fa[N];
set<int>S[N]; bool cmp(int x,int y){ return a[x]<a[y]; }
int get(int x){ return fa[x]==x ? x : fa[x]=get(fa[x]); } int main(){
scanf("%d",&n);
rep(i,,n) scanf("%d",&a[i]),id[i]=fa[i]=i,S[i].insert(a[i]);
sort(id+,id+n+,cmp);
rep(i,,n){
int x=id[i],p=get(x-),q=get(x+);
if (x== || x==n || a[x-]>a[x] || a[x+]>a[x]){
if (x> && a[x-]<a[x]) S[p].insert(a[x]),fa[x]=p;
if (x<n && a[x+]<a[x]) S[q].insert(a[x]),fa[x]=q;
continue;
}
if (S[p].size()>S[q].size()) swap(p,q);
set<int>::iterator it;
for (it=S[p].begin(); it!=S[p].end(); it++)
if (S[q].find(a[x]-(*it))!=S[q].end()) ans++;
for (it=S[p].begin(); it!=S[p].end(); it++) S[q].insert(*it);
S[q].insert(a[x]); fa[p]=fa[x]=q;
}
printf("%d\n",ans);
return ;
}

E

F.枚举win的时候是第几次拿数以及这个数是几。f[i][j]表示数j作为第i个拿出来的数且前i个数都严格递增的概率。根据这个再要求第i+1个数也为j,再之后的数随便放即可。

 #include<cstdio>
#include<algorithm>
#define rep(i,l,r) for (int i=(l); i<=(r); i++)
using namespace std; const int N=,mod=;
int n,x,ans,f[N][N],cnt[N],inv[N]; int main(){
scanf("%d",&n); inv[]=;
rep(i,,n) scanf("%d",&x),cnt[x]++;
rep(i,,n) inv[i]=1ll*(mod-mod/i)*inv[mod%i]%mod;
rep(i,,n){
int s=(i==);
rep(j,,n){
f[i][j]=1ll*s*cnt[j]%mod*inv[n-i+]%mod;
if (cnt[j]>) ans=(ans+1ll*f[i][j]*(cnt[j]-)%mod*inv[n-i]%mod)%mod;
s=(s+f[i-][j])%mod;
}
}
printf("%d\n",ans);
return ;
}

F

Educational Codeforces Round 64 (Div. 2)的更多相关文章

  1. Educational Codeforces Round 64 (Rated for Div. 2)题解

    Educational Codeforces Round 64 (Rated for Div. 2)题解 题目链接 A. Inscribed Figures 水题,但是坑了很多人.需要注意以下就是正方 ...

  2. Educational Codeforces Round 64 部分题解

    Educational Codeforces Round 64 部分题解 不更了不更了 CF1156D 0-1-Tree 有一棵树,边权都是0或1.定义点对\(x,y(x\neq y)\)合法当且仅当 ...

  3. Educational Codeforces Round 64(ECR64)

    Educational Codeforces Round 64 CodeForces 1156A 题意:1代表圆,2代表正三角形,3代表正方形.给一个只含1,2,3的数列a,ai+1内接在ai内,求总 ...

  4. Educational Codeforces Round 64部分题解

    Educational Codeforces Round 64部分题解 A 题目大意:给定三角形(高等于低的等腰),正方形,圆,在满足其高,边长,半径最大(保证在上一个图形的内部)的前提下. 判断交点 ...

  5. Educational Codeforces Round 84 (Div. 2)

    Educational Codeforces Round 84 (Div. 2) 读题读题读题+脑筋急转弯 = =. A. Sum of Odd Integers 奇奇为奇,奇偶为偶,所以n,k奇偶性 ...

  6. Educational Codeforces Round 64 (Rated for Div. 2) A,B,C,D,E,F

    比赛链接: https://codeforces.com/contest/1156 A. Inscribed Figures 题意: 给出$n(2\leq n\leq 100)$个数,只含有1,2,3 ...

  7. Educational Codeforces Round 64 (Rated for Div. 2) (线段树二分)

    题目:http://codeforces.com/contest/1156/problem/E 题意:给你1-n  n个数,然后求有多少个区间[l,r] 满足    a[l]+a[r]=max([l, ...

  8. Educational Codeforces Round 64 (Rated for Div. 2)D(并查集,图)

    #include<bits/stdc++.h>using namespace std;int f[2][200007],s[2][200007];//并查集,相邻点int find_(in ...

  9. Educational Codeforces Round 64(Unrated for Div.1+Div. 2)

    什么垃圾比赛,A题说的什么鬼楞是没看懂.就我只会BD(其实C是个大水题二分),垃圾游戏,技不如人,肝败吓疯,告辞,口胡了E就睡觉了. B 很容易发现,存在一种方案,使得相同字母连在一起,然后发现,当字 ...

随机推荐

  1. [转]IDE 、SATA、SCSI 的区别

    IDE IDE的英文全称为“Integrated Drive Electronics”,即“电子集成驱动器”,它的 本意是指把“硬盘控制器”与“盘体”集成在一起的硬盘驱动器 .把盘体与控制器集成在 一 ...

  2. 表观 | Enhancer | ChIP-seq | 转录因子 | 数据库专题

    需要长期更新! 参考:生信修炼手册 enhancer的基本概念: 长度几十到几千bp,作用是提高靶基因活性,属于顺式作用原件,DNA作用到DNA,转录因子就是反式,是结合到DNA的蛋白. 1981年, ...

  3. Java Hessian实践

    Hessian是基于HTTP的轻量级远程服务解决方案,Hessian向RMI一样,使用二进制进行客户端和服务端的交互.但是与其它二进制远程调用技术(例如RMI)不同的是,它的二进制消息可以移植到其它非 ...

  4. 日常运维中的相关日志切割处理方法总结 [Logrotate、python、shell脚本实现 ]

    对于Linux系统安全来说,日志文件是极其重要的工具.不知为何,我发现很多运维同学的服务器上都运行着一些诸如每天切分Nginx日志之类的CRON脚本,大家似乎遗忘了Logrotate,争相发明自己的轮 ...

  5. Oracle数据库启动报错,找不到数据文件(ORA-01157和ORA-01110)

    数据库报了ORA-01157和ORA-01110错误,提示找不到一个数据文件. 1.启动数据库报错 在启动数据库过程中,报了ORA-01157和ORA-01110错误,提示找不到数据文件. SQL&g ...

  6. ZingChart line 折线图表数据设置

    根据 x 坐标和 y 坐标一一对应进行设置 (x,y) { "type": "line", "series":[ {,],[,],[,],[ ...

  7. tensorflow 如何看shape

    https://blog.csdn.net/yinxingtianxia/article/details/78121941 输入: x= tf.truncated_normal([, , ], dty ...

  8. Linux_CentOS软件安装调试 源代码包编译安装和 二进制包配置

    Linux 下源代码(C 语言)如何编译(安装) 1. 先安装源代码编译的软件 gcc,make,openssl 如下: yum install -y gcc make gcc-c++ openssl ...

  9. Spring cloud微服务安全实战-_5-10实现基于session的SSO(Token有效期)

    refresh_token过期了怎么办,虽然可以设置一个比较长的有效期,但是终归还是要过期的. 只能从认证服务器重新走认证授权的流程. 两种情况 1,session还没过期的,跳过去之后,直接就知道你 ...

  10. SQL语句精妙集合

    1一.基础  2  31.说明:创建数据库  4Create DATABASE database-name  5  62.说明:删除数据库  7drop database dbname  8  93. ...