1 简介

  由卡尔曼这个学者提出的最佳线性滤波器,单纯时域维度即可实现【无需进行频域变换】

2 思路

  由上一时刻的最佳估计值XKE_P预测①当前时刻预测值Pxv  与  ②当前时刻的测量值Mxv  进行联立计算获得当  ③前时刻的最佳估计值XKE

3 核心

4 Matlab实例

4.1 题目【老师留的课堂作业】

研一的时候做过一次,当时没有总结;最近师弟们在写这个作业花时间重新弄了一遍,做了一次总结

4.2 源代码

不带BU参数

version9_release.m

%% 卡尔曼滤波的发布版本程序
%% 时间:2019.12.05
%% 版本:v9
%% 特性:单参处理【防止多维度计算混乱】
%% TODO:引入多参数进一步优化算法 %% 数据读取
% MDistance=importdata('RoverMeasurementData.txt');
Mxv=importdata('data3.mat'); % 笛卡尔坐标系,测量值
Txv=importdata('RoverTrueStates.txt'); % 真实值
len=size(Mxv,1); %% 参数设置
q=0.010000 ; R=0.500000; Q=[1 0;0 1].*q; %% 正式处理
XKE=zeros(4,len);
for i=1:len
xv = func_kalmanFilter_singleVal(Mxv(i,1),Q,R,i);
XKE(1,i)=xv(1);
XKE(3,i)=xv(2);
end for i=1:len
xv = func_kalmanFilter_singleVal(Mxv(i,2),Q,R,i);
XKE(2,i)=xv(1);
XKE(4,i)=xv(2);
end %% 图谱显示
figure(1);
plot(Txv(1,:),Txv(2,:),'r-*','markersize',8),hold on;
plot(XKE(1,:),XKE(2,:),'b-s','markersize',8),hold on;
plot(Mxv(:,1),Mxv(:,2),'g-v','markersize',8),hold on;
xlabel('位置x');
ylabel('位置y');
legend({'真实值','估计值','测量值'},'Location','northwest');%
set(gca,'FontSize',25); figure(2);
sub_XKE=sqrt((XKE(1,:)-Txv(1,:)).^2+(XKE(2,:)-Txv(2,:)).^2);
sub_Mxv=sqrt((Mxv(:,1)'-Txv(1,:)).^2+(Mxv(:,2)'-Txv(2,:)).^2);
plot(sub_XKE,'b-s','markersize',8),hold on;
plot(sub_Mxv,'g-v','markersize',8),hold on;
xlabel('时间t');
ylabel('与真实值的距离均方差d');
legend({'估计值误差','测量值误差'},'Location','northwest');%
set(gca,'FontSize',25);
% print -djpeg -r600 不带BU位置点;
% print -djpeg -r600 不带BU方差值;

  

version10_release.m

%% 卡尔曼滤波的发布版本程序
%% 时间:2019.12.05
%% 版本:v9
%% 特性:单参处理【防止多维度计算混乱】
%% TODO:引入多参数进一步优化算法 %% 数据读取
% MDistance=importdata('RoverMeasurementData.txt');
Mxv=importdata('data3.mat'); % 笛卡尔坐标系,测量值
Txv=importdata('RoverTrueStates.txt'); % 真实值 %% 参数设置
MCN=20;
d_range1=0.01;
d_range2=0.01; q=0:d_range1:1;
R=0:d_range2:0.5; len1=size(q,2);
len2=size(R,2); Q=[1 0;0 1]; %% 正式处理
sub_map=zeros(1,len1*len2);
len=len1*len2;
tic;
t1=toc;
% for k=1:len
parfor k=1:len
i=mod(k-1,len1)+1; %行号
j=floor((k-1)/len1)+1; %列号
sub_map(k)=func_kalmanFilter_doubleVal(Mxv,Txv, Q.*q(1,i), R(1,j), MCN);
fprintf('run is going on k=%d,index=(%d, %d)\n',k,i,j);
end
t2=toc;
fprintf('耗时t=%f\n',(t2-t1)); %% 获取当前最优解
sub_min=min(sub_map);
k=find(sub_map==sub_min);
i=mod(k-1,len1)+1; %行号
j=floor((k-1)/len1)+1; %列号
Eq=q(1,i);
ER=R(1,j);
fprintf('当前最优解 q=%f ; R=%f ,sub=%f\n',Eq,ER,sub_min); %% 显示图谱
sub_map=reshape(sub_map,len1,len2);
[X,Y]= meshgrid(q,R);
figure(1); mesh(X',Y',sub_map);
xlabel('Q预测模型噪声');
ylabel('R观测噪声'); %% 最优数值解1
% q=0.017;
% R=3.6;
% sub=32.0530; % 当前最优解 q=0.010000 ; R=0.500000 ,sub=44.573339

  

带BU参数

version11_release.m

%% 卡尔曼滤波的发布版本程序
%% 时间:2019.12.05
%% 版本:v11
%% 特性:引入加速度参与计算
%% TODO:引入多参数进一步优化算法 %% 数据读取
% MDistance=importdata('RoverMeasurementData.txt');
Mxv=importdata('data3.mat'); % 笛卡尔坐标系,测量值
Txv=importdata('RoverTrueStates.txt'); % 真实值
len=size(Mxv,1); %% 参数设置
% q=0.006000;
% R=1.270000 ;
% q=0.006000 ; R=0.010000 ;
% q=0.030000 ; R=0.050000 ;
% q=0.030000 ; R=0.050000;
q=0.040000 ; R=0.050000;
Q=[1 0;0 1].*q; %% 正式处理
XKE=zeros(4,len);
for i=1:len
xv = func_kalmanFilter_singleVal_withBU(Mxv(i,1),Q,R,i);
XKE(1,i)=xv(1);
XKE(3,i)=xv(2);
end for i=1:len
xv = func_kalmanFilter_singleVal_withBU(Mxv(i,2),Q,R,i);
XKE(2,i)=xv(1);
XKE(4,i)=xv(2);
end %% 图谱显示
figure(1);
plot(Txv(1,:),Txv(2,:),'r-*','markersize',8),hold on;
plot(XKE(1,:),XKE(2,:),'b-s','markersize',8),hold on;
plot(Mxv(:,1),Mxv(:,2),'g-v','markersize',8),hold on;
xlabel('位置x');
ylabel('位置y');
legend({'真实值','估计值','测量值'},'Location','northwest');%
set(gca,'FontSize',25); figure(2);
sub_XKE=sqrt((XKE(1,:)-Txv(1,:)).^2+(XKE(2,:)-Txv(2,:)).^2);
sub_Mxv=sqrt((Mxv(:,1)'-Txv(1,:)).^2+(Mxv(:,2)'-Txv(2,:)).^2);
plot(sub_XKE,'b-s','markersize',8),hold on;
plot(sub_Mxv,'g-v','markersize',8),hold on;
xlabel('时间t');
ylabel('与真实值的距离均方差d');
legend({'估计值误差','测量值误差'},'Location','northwest');%
set(gca,'FontSize',25);
% print -djpeg -r600 带BU位置点;
% print -djpeg -r600 带BU方差值;

  

version12_release.m

%% 卡尔曼滤波的发布版本程序
%% 时间:2019.12.05
%% 版本:v9
%% 特性:单参处理【防止多维度计算混乱】
%% TODO:引入多参数进一步优化算法 %% 数据读取
% MDistance=importdata('RoverMeasurementData.txt');
Mxv=importdata('data3.mat'); % 笛卡尔坐标系,测量值
Txv=importdata('RoverTrueStates.txt'); % 真实值 %% 参数设置
MCN=20;
d_range1=0.01;
d_range2=0.01; q=0:d_range1:1;
R=0:d_range2:0.5; len1=size(q,2);
len2=size(R,2); Q=[1 0;0 1]; %% 正式处理
sub_map=zeros(1,len1*len2);
len=len1*len2;
tic;
t1=toc;
% for k=1:len
parfor k=1:len
i=mod(k-1,len1)+1; %行号
j=floor((k-1)/len1)+1; %列号
sub_map(k)=func_kalmanFilter_doubleVal_withBU(Mxv,Txv, Q.*q(1,i), R(1,j), MCN);
fprintf('run is going on k=%d,index=(%d, %d)\n',k,i,j);
end
t2=toc;
fprintf('耗时t=%f\n',(t2-t1)); %% 获取当前最优解
sub_min=min(sub_map);
k=find(sub_map==sub_min);
i=mod(k-1,len1)+1; %行号
j=floor((k-1)/len1)+1; %列号
Eq=q(1,i);
ER=R(1,j);
fprintf('当前最优解 q=%f ; R=%f ,sub=%f\n',Eq,ER,sub_min); %% 显示图谱
sub_map=reshape(sub_map,len1,len2);
[X,Y]= meshgrid(q,R);
figure(1); mesh(X',Y',sub_map);
xlabel('Q预测模型噪声');
ylabel('R观测噪声'); %% 最优数值解1
% q=0.017;
% R=3.6;
% sub=32.0530; % 当前最优解 q=0.040000 ; R=0.050000 ,sub=57.511923

  

func_kalmanFilter_doubleVal

%% 参数比较数据Q、R的数据比较

function [sub_mean] = func_kalmanFilter_doubleVal(Mxv,Txv, Q, R, MCN)

sub_cell=zeros(1,MCN);
len=size(Mxv,1);
XKE=zeros(4,len);
for iRun=1:MCN %% 处理数据
for i=1:len
xv = func_kalmanFilter_singleVal(Mxv(i,1),Q,R,i);
XKE(1,i)=xv(1);
XKE(3,i)=xv(2);
end for i=1:len
xv = func_kalmanFilter_singleVal(Mxv(i,2),Q,R,i);
XKE(2,i)=xv(1);
XKE(4,i)=xv(2);
end %% 计算均方差和
sub=sqrt((XKE(1,end-50:end)-Txv(1,end-50:end)).^2+(XKE(2,end-50:end)-Txv(2,end-50:end)).^2);
sub_cell(1,iRun)=sum(sub);
end
sub_mean=mean(sub_cell); end

  

func_kalmanFilter_singleVal

%% 单参卡尔曼滤波函数

function [XKE] = func_kalmanFilter_singleVal(Z,Q,R,iLoop)
%FUNC_KALMANFILTER_ 此处显示有关此函数的摘要
% 此处显示详细说明
persistent X;
persistent P;
persistent F;
persistent H;
if iLoop==1
X=[0;0];
P=[1 0;0 1];
F=[1 1;0 1];
H=[1 0];
end X_=F*X;
P_=F*P*F'+Q;
K=P_*H'/(H*P_*H'+R);
X=X_+K*(Z-H*X_);
P=(eye(2)-K*H)*P_;
XKE=X;
end

  

func_kalmanFilter_doubleVal_withBU

%% 参数比较数据Q、R的数据比较

function [sub_mean] = func_kalmanFilter_doubleVal_withBU(Mxv,Txv, Q, R, MCN)

sub_cell=zeros(1,MCN);
len=size(Mxv,1);
XKE=zeros(4,len);
for iRun=1:MCN %% 处理数据
for i=1:len
xv = func_kalmanFilter_singleVal_withBU(Mxv(i,1),Q,R,i);
XKE(1,i)=xv(1);
XKE(3,i)=xv(2);
end for i=1:len
xv = func_kalmanFilter_singleVal_withBU(Mxv(i,2),Q,R,i);
XKE(2,i)=xv(1);
XKE(4,i)=xv(2);
end %% 计算均方差和
sub=sqrt((XKE(1,end-50:end)-Txv(1,end-50:end)).^2+(XKE(2,end-50:end)-Txv(2,end-50:end)).^2);
sub_cell(1,iRun)=sum(sub);
end
sub_mean=mean(sub_cell); end

  

func_kalmanFilter_singleVal_withBU

%% 带加速度参数的卡尔曼滤波器

function [XKE] = func_kalmanFilter_singleVal_withBU(Z,Q,R,iLoop)
%FUNC_KALMANFILTER_SINGLEVAL_WITHBU 此处显示有关此函数的摘要
% 此处显示详细说明
persistent X; % 位置与速度
persistent U; % 加速度
persistent P; % 协方差矩阵
persistent F; % 状态转移矩阵
persistent B; % 状态控制矩阵
persistent H; % 观测矩阵
if iLoop==1
X=[0;0];
U=0;
P=[1 0;0 1];
F=[1 1;0 1];
B=[1./2;1];
H=[1 0];
end X_=F*X+B*U; % ① 状态预测公式
P_=F*P*F'+Q; % ② 噪声协方差传递
K=P_*H'/(H*P_*H'+R); % ③ 卡尔曼系数计算
XK=X;%暂存前一时刻数据
X=X_+K*(Z-H*X_); % ④ 计算最优估计值
P=(eye(2)-K*H)*P_; % ⑤ 噪声协方差矩阵更新
U=X(2,1)-XK(2,1);
XKE=X; end

  

4.3 结果显示

不带控制参数的位置点数据图谱:

不带控制参数的方差值图谱:

带控制参数的位置点数据图谱:

带控制参数的方差值图谱:

5 总结

  性能确实还可以的,里面的难点在于各个矩阵运算以及Q、R参数的设定,这里我是使用随机参数法,广撒网多次蒙特卡洛仿真求均值,最后在这些参数中选择最优的那个解为我的模型参数。

6 相关链接

开源代码:

链接:https://pan.baidu.com/s/1fUM0VmPVabqKv89WUyZmng  提取码:x3zv

参考链接:

https://www.jianshu.com/p/f6ce8943560c?from=singlemessage

https://www.youtube.com/watch?v=2-lu3GNbXM8

滤波器算法(1)-卡尔曼滤波小车附带题目与MATLAB程序的更多相关文章

  1. 链表算法题二,还原题目,用debug调试搞懂每一道题

    文章简述 大家好,本篇是个人的第4篇文章. 承接第3篇文章<开启算法之路,还原题目,用debug调试搞懂每一道题>,本篇文章继续分享关于链表的算法题目. 本篇文章共有5道题目 一,反转链表 ...

  2. GMM算法的matlab程序

    GMM算法的matlab程序 在“GMM算法的matlab程序(初步)”这篇文章中已经用matlab程序对iris数据库进行简单的实现,下面的程序最终的目的是求准确度. 作者:凯鲁嘎吉 - 博客园 h ...

  3. GMM算法的matlab程序(初步)

    GMM算法的matlab程序 在https://www.cnblogs.com/kailugaji/p/9648508.html文章中已经介绍了GMM算法,现在用matlab程序实现它. 作者:凯鲁嘎 ...

  4. KFCM算法的matlab程序(用FCM初始化聚类中心)

    KFCM算法的matlab程序(用FCM初始化聚类中心) 在“聚类——KFCM”这篇文章中已经介绍了KFCM算法,现在用matlab程序对iris数据库进行实现,用FCM初始化聚类中心,并求其准确度与 ...

  5. KFCM算法的matlab程序

    KFCM算法的matlab程序 在“聚类——KFCM”这篇文章中已经介绍了KFCM算法,现在用matlab程序对iris数据库进行简单的实现,并求其准确度. 作者:凯鲁嘎吉 - 博客园 http:// ...

  6. FCM算法的matlab程序2

    FCM算法的matlab程序2 在“FCM算法的matlab程序”这篇文章中已经用matlab程序对iris数据库进行实现,并求解准确度.下面的程序是另一种方法,是最常用的方法:先初始化聚类中心,在进 ...

  7. FCM算法的matlab程序

    FCM算法的matlab程序 在“FCM算法的matlab程序(初步)”这篇文章中已经用matlab程序对iris数据库进行简单的实现,下面的程序最终的目的是求准确度. 作者:凯鲁嘎吉 - 博客园 h ...

  8. K-means算法的matlab程序

    K-means算法的matlab程序 在“K-means算法的matlab程序(初步)”这篇文章中已经用matlab程序对iris数据库进行简单的实现,下面的程序最终的目的是求准确度. 作者:凯鲁嘎吉 ...

  9. FCM算法的matlab程序(初步)

    FCM算法的matlab程序 在https://www.cnblogs.com/kailugaji/p/9648430.html文章中已经介绍了FCM算法,现在用matlab程序实现它. 作者:凯鲁嘎 ...

随机推荐

  1. macOS: mac下配置charles来抓取http请求

    1. 准备charles 下载链接:https://www.charlesproxy.com/download/ 2. 配置charles 2.1)配置http代理.打开Charles软件,配置htt ...

  2. html表格导出Excel的一点经验心得

    最近在做统计功能,要求统计结果(表格)既能查看(BS系统,在浏览器查看),又能输出为excel文件.对于输出excel文件,在网上找到n种方案,因为还需查看,最终选择了统计结果输出为table,查看时 ...

  3. 【转载】 【Tensorflow】卷积神经网络中strides的参数

    原文地址: https://blog.csdn.net/TwT520Ly/article/details/79540251 http://blog.csdn.net/TwT520Ly -------- ...

  4. pix2pix&Cycle GAN&pix2pix HD

    这里简短地谈一下如题的三篇论文: 参考:https://blog.csdn.net/gdymind/article/details/82696481 (1)pix2pix:从一张图片生成另一张图片 p ...

  5. C#给图片加水印,可设置透明度

    C#给图片加水印,可设置透明度,设置水印的位置可以看一下上一篇哈 /// <summary> /// Creating a Watermarked Photograph with GDI+ ...

  6. CF1227D Optimal Subsequences

    思路: 首先对于单个查询(k, p)来说,答案一定是a数组中的前k大数.如果第k大的数字有多个怎么办?取索引最小的若干个.所以我们只需对a数组按照值降序,索引升序排序即可. 多个查询怎么办?离线处理. ...

  7. 最新 中细软java校招面经 (含整理过的面试题大全)

    从6月到10月,经过4个月努力和坚持,自己有幸拿到了网易雷火.京东.去哪儿.中细软等10家互联网公司的校招Offer,因为某些自身原因最终选择了 中细软.6.7月主要是做系统复习.项目复盘.LeetC ...

  8. 推荐linux运维必备的几本书

    首先,<鸟哥的linux私房菜> 鸟哥 其次,<linux就该这么学> 刘瑞版 然后,<CentOS linux系统运维> 张祥琳版 最后,<CentOS运维 ...

  9. windows下大数据开发环境搭建(3)——Scala环境搭建

    一.所需环境 ·Java 8   二.下载Scala https://www.scala-lang.org/download/ 三.配置环境变量 SCALA_HOME: C:\scala Path: ...

  10. 伸缩布局 Flex

    其中在webkit内核的浏览器中使用时,必须加上-webkit-前缀,采用Flex布局的元素,称为Flex容器(flex container),简称”容器”.它的所有子元素自动成为容器成员,称为Fle ...