原文地址:

https://www.cnblogs.com/nlpowen/p/3620470.html

-----------------------------------------------------------------------------------------------

KL距离,是Kullback-Leibler差异(Kullback-Leibler Divergence)的简称,也叫做相对熵(Relative Entropy)。它衡量的是相同事件空间里的两个概率分布的差异情况。其物理意义是:在相同事件空间里,概率分布P(x)对应的每个事件,若用概率分布 Q(x)编码时,平均每个基本事件(符号)编码长度增加了多少比特。我们用D(P||Q)表示KL距离,计算公式如下:

当两个概率分布完全相同时,即P(X)=Q(X),其相对熵为0 。我们知道,概率分布P(X)的信息熵为:

其表示,概率分布P(x)编码时,平均每个基本事件(符号)至少需要多少比特编码。通过信息熵的学习,我们知道不存在其他比按照本身概率分布更好的编码方式了,所以D(P||Q)始终大于等于0的。虽然KL被称为距离,但是其不满足距离定义的三个条件:1)非负性(满足);2)对称性(不满足);3)三角不等式 (不满足)。

我们以一个例子来说明,KL距离的含义。

假如一个字符发射器,随机发出0和1两种字符,真实发出概率分布为A,但实际不知道A的具体分布。现在通过观察,得到概率分布B与C。各个分布的具体情况如下:

A(0)=1/2,A(1)=1/2

B(0)=1/4,B(1)=3/4

C(0)=1/8,C(1)=7/8

那么,我们可以计算出得到如下:

也即,这两种方式来进行编码,其结果都使得平均编码长度增加了。我们也可以看出,按照概率分布B进行编码,要比按照C进行编码,平均每个符号增加的比特数目少。从分布上也可以看出,实际上B要比C更接近实际分布(因为其与A分布的KL距离更近)。

如果实际分布为C,而我们用A分布来编码这个字符发射器的每个字符,那么同样我们可以得到如下:

再次,我们进一步验证了这样的结论:对一个信息源编码,按照其本身的概率分布进行编码,每个字符的平均比特数目最少。这就是信息熵的概念,衡量了信息源本身的不确定性。另外,可以看出KL距离不满足对称性,即D(P||Q)不一定等于D(Q||P)。

当然,我们也可以验证KL距离不满足三角不等式条件。

上面的三个概率分布,D(B||C)=1/4log2+3/4log(6/7)。可以得到:D(A||C) - (D(A||B)+ D(B||C)) =1/2log2+1/4log(7/6)>0,这里验证了KL距离不满足三角不等式条件。所以KL距离,并不是一种距离度量方式,虽然它有这样的学名。

其实,KL距离在信息检索领域,以及统计自然语言方面有重要的运用。

-----------------------------------------------------------------------------------------------

【转载】 KL距离(相对熵)的更多相关文章

  1. (转载)KL距离,Kullback-Leibler Divergence

    转自:KL距离,Kullback-Leibler Divergence   KL距离,是Kullback-Leibler差异(Kullback-Leibler Divergence)的简称,也叫做相对 ...

  2. KL距离(相对熵)

    KL距离,是Kullback-Leibler差异(Kullback-Leibler Divergence)的简称,也叫做相对熵(Relative Entropy).它衡量的是相同事件空间里的两个概率分 ...

  3. KL距离,Kullback-Leibler Divergence

    http://www.cnblogs.com/ywl925/p/3554502.html http://www.cnblogs.com/hxsyl/p/4910218.html http://blog ...

  4. [NLP自然语言处理]计算熵和KL距离,java实现汉字和英文单词的识别,UTF8变长字符读取

    算法任务: 1. 给定一个文件,统计这个文件中所有字符的相对频率(相对频率就是这些字符出现的概率——该字符出现次数除以字符总个数,并计算该文件的熵). 2. 给定另外一个文件,按上述同样的方法计算字符 ...

  5. 最大熵与最大似然,以及KL距离。

    DNN中最常使用的离散数值优化目标,莫过于交差熵.两个分布p,q的交差熵,与KL距离实际上是同一回事. $-\sum plog(q)=D_{KL}(p\shortparallel q)-\sum pl ...

  6. 各种形式的熵函数,KL距离

    自信息量I(x)=-log(p(x)),其他依次类推. 离散变量x的熵H(x)=E(I(x))=-$\sum\limits_{x}{p(x)lnp(x)}$ 连续变量x的微分熵H(x)=E(I(x)) ...

  7. [Machine Learning & Algorithm]CAML机器学习系列2:深入浅出ML之Entropy-Based家族

    声明:本博客整理自博友@zhouyong计算广告与机器学习-技术共享平台,尊重原创,欢迎感兴趣的博友查看原文. 写在前面 记得在<Pattern Recognition And Machine ...

  8. 信息熵 Information Theory

    信息论(Information Theory)是概率论与数理统计的一个分枝.用于信息处理.信息熵.通信系统.数据传输.率失真理论.密码学.信噪比.数据压缩和相关课题.本文主要罗列一些基于熵的概念及其意 ...

  9. IQA(图像质量评估)

    图像质量评价(Image Quality Assessment,IQA)是图像处理中的基本技术之一,主要通过对图像进行特性分析研究,然后评估出图像优劣(图像失真程度). 主要的目的是使用合适的评价指标 ...

随机推荐

  1. [software test - 001] Why we need software test?

    /*  This is a conclusion about the software testing job. */ /*  Scope: middle level software tasks,  ...

  2. Kotlin编译器优化与when关键字详解

    Any类型: 定义一个函数,其参数接受所有类型,对于Java而言Object是所有类的基类,而在Kotlin中得用Any关键字,如下: 其中瞅一下该Any字段是个啥类型: 然后里面做一些判断: 这是因 ...

  3. LOJ#3104「TJOI2019」甲苯先生的字符串

    题目描述 一天小甲苯得到了一条神的指示,他要把神的指示写下来,但是又不能泄露天机,所以他要用一种方法把神的指示记下来. 神的指示是一个字符串,记为字符串 \(s_1\),\(s_1\) 仅包含小写字母 ...

  4. P1436 棋盘分割[dp]

    题目描述 将一个8*8的棋盘进行如下分割:将原棋盘割下一块矩形棋盘并使剩下部分也是矩形,再将剩下的两部分中的任意一块继续如此分割,这样割了(n-1)次后,连同最后剩下的矩形棋盘共有n块矩形棋盘.(每次 ...

  5. 区别和认识.net四个判等方法

    概要 本方介绍.net如何判断两个对象是否相等 .Net有四个判等函数 1)Object.ReferenceEquals 2)Object.Equals 3)对象实例的Equals 4)==操作符 这 ...

  6. DevExpress21:SplashScreenManager控件实现启动闪屏和等待信息窗口

    DevExpress中SplashScreenManager这个控件的主要作用就是显示程序集加载之前的进度条显示和进行耗时操作时候的等待界面. 一.SplashScreenManager控件的使用 1 ...

  7. 大数相加和大数相乘以及打印从1到最大的n位数

    string add(string a, string b){ int nlength; int diff; if (a.size() > b.size()){ nlength = a.size ...

  8. getchar()函数举例

    #include<stdio.h>void main(){ char ch; ch=getchar(); printf("%c",ch);}

  9. 【一起来烧脑】一步Sass学会体系

    [外链图片转存失败(img-G32u6UQ8-1563572536495)(https://upload-images.jianshu.io/upload_images/11158618-a03a58 ...

  10. Chrome教程(二)使用ChromeDevTools命令菜单运行命令

    1.模拟移动设备 点击 Toggle Device Toolbar可以打开用于模拟移动设备视口的界面. 2.限制网络流量和 CPU 占用率 要限制网络流量和 CPU 占用率,请从 Throttle 列 ...