https://www.cnblogs.com/31415926535x/p/11460682.html

上午没课,做一套题,,练一下手感和思维,,教育场的71 ,,前两到没啥,,后面就做的磕磕巴巴的,,,有想法但是不敢实现,,自我否定,,没了思路就只能官方题解,,发现其实都很简单,,,思维场把,,,,

A There Are Two Types Of Burgers

贪心就完事了,,推出公式不知道怎么证明是最优的,,,(敲错变量还wale一发emmm

#include <bits/stdc++.h>
#define aaa cout<<233<<endl;
#define endl '\n'
#define pb push_back
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef long double ld;
// mt19937 rnd(time(0));
const int inf = 0x3f3f3f3f;//1061109567 > 1e9
const ll linf = 0x3f3f3f3f3f3f3f3f;
const double eps = 1e-7;
const double pi = 3.14159265358979;
const int maxn = 1e5 + 5;
const int maxm = 1e3 + 5;
const int mod = 1e9 + 7; int main()
{
// double pp = clock();
// freopen("233.in", "r", stdin);
// freopen("233.out", "w", stdout);
ios_base::sync_with_stdio(0);
cin.tie(0);cout.tie(0); int t; cin >> t;
while(t--)
{
int b, p, f;
cin >> b >> p >> f;
int h, c;
cin >> h >> c;
int ans = 0;
if(h < c)
{
ans = c * (min(f, b / 2));
b -= 2 * min(f, b / 2);
ans += h * (min(p, b / 2));
}
else
{
ans = h * min(p, b / 2);
b -= 2 * min(p, b / 2);
ans += c * min(f, b / 2);
}
cout << ans << endl; } // cout << endl << (clock() - pp) / CLOCKS_PER_SEC << endl;
return 0;
}

B Square Filling

题意就是给你一个矩形,,由0,1组成,然后一次可以进行一个操作:把 \((x, y), (x, y + 1), (x + 1, y), (x + 1, y + 1)\) 这几个点变成1,,然后问你从一个全零的矩阵变成这个矩阵的操作方法,,没限制操作次数,,那就乱搞就行了,,

#include <bits/stdc++.h>
#define aaa cout<<233<<endl;
#define endl '\n'
#define pb push_back
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef long double ld;
// mt19937 rnd(time(0));
const int inf = 0x3f3f3f3f;//1061109567 > 1e9
const ll linf = 0x3f3f3f3f3f3f3f3f;
const double eps = 1e-7;
const double pi = 3.14159265358979;
const int maxn = 1e3 + 5;
const int maxm = 1e3 + 5;
const int mod = 1e9 + 7; int a[maxn][maxn];
vector<pair<int, int> > ans;
bool check(int x, int y)
{
if(a[x][y] && a[x][y + 1] && a[x + 1][y] && a[x + 1][y + 1])return true;
return false;
}
int main()
{
// double pp = clock();
// freopen("233.in", "r", stdin);
// freopen("233.out", "w", stdout);
ios_base::sync_with_stdio(0);
cin.tie(0);cout.tie(0); int n, m;cin >> n >> m;
for(int i = 1; i <= n; ++i)
for(int j = 1; j <= m; ++j)
cin >> a[i][j]; for(int i = 1; i <= n; ++i)
{
for(int j = 1; j <= m; ++j)
{
if(!a[i][j])continue;
if(check(i, j))ans.push_back(make_pair(i, j));
else if(check(i, j - 1))ans.push_back(make_pair(i, j - 1));
else if(check(i - 1, j))ans.push_back(make_pair(i - 1, j));
else if(check(i - 1, j - 1))ans.push_back(make_pair(i - 1, j - 1));
else
{
cout << -1 << endl;
return 0;
}
}
}
sort(ans.begin(), ans.end());
int size = unique(ans.begin(), ans.end()) - ans.begin();
cout << size << endl;
for(int i = 0; i < size; ++i)cout << ans[i].first << " " << ans[i].second << endl; // cout << endl << (clock() - pp) / CLOCKS_PER_SEC << endl;
return 0;
}

C Gas Pipeline

dp?! 没怎么训练过dp,,暂时扔了,,

D Number Of Permutations

感觉这道题不错,,

题意就是对于给你的一个二元对 序列s,,他的排列中任意一维满足不递减的排列就是 坏的排列,问你所有的排列中好的共有几种,,

一开始被tag的组合吓懵了,,以为是什么推公式的排列组合题,,

其实解法很简单,,考虑反面就行了,,,总的排列的情况一共有 \(fac[n]\) 种,,然后对于第一维不递减的排列的个数记为 \(cnt_1\) ,同理第二维的就是 \(cnt_2\) ,,根据容斥的思想,,还有它俩的交集 \(cnt_{12}\) ,,最后他们的答案就是 \(fac[n] - cnt_1 - cnt_2 + cnt_{12}\) ,,,

前两种的求法就是排序后,,如果没有重复的元素,那就就是一种情况,,如果有重复的元素,,那么就是重复元素的阶乘的积,,

对于最后这种交集的情况,首先要按第一维排序,如果第一维相等,按第二维排序,,,然后判断第二维是不是不递减的,,如果不是不递减的,,那么这种情况就是0种,,否者的话,,对于那些相同的二元对就可以互换位置,,那么答案就是他们的阶乘的积,,

最后统计答案就行了,,记得多加几个模,,因为前两种的情况可能很多,,,emmmm,,,wa了好几发,,,

#include <bits/stdc++.h>
#define aaa cout<<233<<endl;
#define endl '\n'
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef long double ld;
// mt19937 rnd(time(0));
const int inf = 0x3f3f3f3f;//1061109567 > 1e9
const ll linf = 0x3f3f3f3f3f3f3f3f;
const double eps = 1e-7;
const double pi = 3.14159265358979;
const int maxn = 3e5 + 5;
const int maxm = 1e3 + 5;
// const int mod = 1e9 + 7;
const int mod = 998244353; pair<int, int> a[maxn];
bool cmpab(pair<int, int> i, pair<int, int> j)
{
if(i.first == j.first)return i.second < j.second;
return i.first < j.first;
}
bool cmpb(pair<int, int> i, pair<int, int> j)
{
return i.second < j.second;
}
ll fac[maxn];
void init()
{
fac[0] = fac[1] = 1;
for(int i = 2; i < maxn; ++i)fac[i] = fac[i - 1] * i % mod;
}
int main()
{
// double pp = clock();
// freopen("233.in", "r", stdin);
// freopen("233.out", "w", stdout);
ios_base::sync_with_stdio(0);
cin.tie(0);cout.tie(0); int n; cin >> n;
for(int i = 1; i <= n; ++i)cin >> a[i].first >> a[i].second;
sort(a + 1, a + 1 + n, cmpab);
ll cnt1, cnt2, cnt12;
cnt1 = cnt2 = cnt12 = 1;
init();
for(int i = 1; i <= n; ++i)
{
int l = i, r = n;
int k = i;
while(l <= r)
{
int mid = l + r >> 1;
if(a[mid].first == a[i].first)
{
l = mid + 1;
k = mid;
}
else
{
r = mid - 1;
}
}
cnt1 = cnt1 * fac[k - i + 1] % mod;
i = k;
}
bool flag = true;
for(int i = 1; i <= n; ++i)if(a[i].second < a[i - 1].second)flag = false;
if(flag)
{
for(int i = 1; i <= n; ++i)
{
int l = i, r = n;
int k = i;
while(l <= r)
{
int mid = l + r >> 1;
if(a[mid].first == a[i].first && a[mid].second == a[i].second)
{
l = mid + 1;
k = mid;
}
else
{
r = mid - 1;
}
}
cnt12 = cnt12 * fac[k - i + 1] % mod;
i = k;
}
}
else
{
cnt12 = 0;
} sort(a + 1, a + 1 + n, cmpb);
for(int i = 1; i <= n; ++i)
{
int l = i, r = n;
int k = i;
while(l <= r)
{
int mid = l + r >> 1;
if(a[mid].second == a[i].second)
{
l = mid + 1;
k = mid;
}
else
{
r = mid - 1;
}
}
cnt2 = cnt2 * fac[k - i + 1] % mod;
i = k;
}
// cout << fac[n] << " " << cnt1 << " " << cnt2 << " " << cnt12 << endl;
if(n != 1)cout << (fac[n] - cnt1 - cnt2 + cnt12 + mod * 2) % mod << endl;
else cout << 0 << endl; // cout << endl << (clock() - pp) / CLOCKS_PER_SEC << endl;
return 0;
}

E XOR Guessing

一道简单的交互题,,,

题意就是你有两次询问机会,,每次询问是100 个数,,然后交互器会选择一个数和答案 \(x\) 的异或作为输入给你,,最后你要得出答案那个数,,,

看到异或,第一反应就是位运算相关的,,,往上靠就行了,,只有两次机会的话,,而且书的范围是14位内的正整数,,,所以考虑第一次询问 \(x\) 的高7位,,后一次询问低7位,,,然后将得到的值掐掉前面的低7位,,“并” 上后面掐掉高7位的值就行了,,,

忘记将 #define '\n' endl 注释ile了一发,,,emmmmm

#include <bits/stdc++.h>
#define aaa cout<<233<<endl;
// #define endl '\n'
#define pb push_back
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef long double ld;
// mt19937 rnd(time(0));
const int inf = 0x3f3f3f3f;//1061109567 > 1e9
const ll linf = 0x3f3f3f3f3f3f3f3f;
const double eps = 1e-7;
const double pi = 3.14159265358979;
const int maxn = 1e3 + 5;
const int maxm = 1e3 + 5;
const int mod = 1e9 + 7; int main()
{
// double pp = clock();
// freopen("233.in", "r", stdin);
// freopen("233.out", "w", stdout);
ios_base::sync_with_stdio(0);
cin.tie(0);cout.tie(0); cout << "? ";
for(int i = 1; i <= 100; ++i)cout << i << " ";cout << endl;fflush(stdout);
ll a; cin >> a;
cout << "? ";
for(int i = 1; i <= 100; ++i)cout << (i << 7) << " "; cout << endl;fflush(stdout);
ll b; cin >> b;
// cout << a << b << endl;
a = a & (0b11111110000000);
b = b & (0b00000001111111);
cout << "! " << (a | b) << endl;fflush(stdout); // cout << endl << (clock() - pp) / CLOCKS_PER_SEC << endl;
return 0;
}

F Remainder Problem

这题也不错,,

题意就是一个长为500000的数组,,一个操作是对 第x位 a[x] += y;另一种操作是询问所有 模x余数为y位置处的数的和,,,

自己想的做法T了,,,因为没有想到 修改一个数他所会影响的可能询问该怎么表示,,,,

这题的解法是: 用一个数组 \(sum[x][y]\) 保存模为x时余数时y的答案,,因为当模数很大时,,我们即使时暴力找,,因为这时的数很少,,,所以询问不怎么费时间,,,但是数小时,,,寻找的数就很多,,,这样就会T,,,所以我们只保存前750个模数的答案,,,

每次修改一个数 \(a[x] += y\) 后,,,对于所有 \(sum[i][x \% i]\) 都会产生影响,,,这里的i就是模数,,,\(x \% i\) 相当于是这个模数下的余数,,当询问 \((2, i, x \% i)\) 时,,,这个答案就可以直接得到,,,

比如说我修改 a[7] 的值,,那么对于一个询问 \((x, y)={(3, 1), (4, 3), (5, 2)......}\) 这些询问的值一定会改变,,,也就是对 \(sum[3][1], sum[4][7 \% 4], sum[5][7 \% 5]\) 进行了修改,,

思路理清代码就简单了,,,

#include <bits/stdc++.h>
#define aaa cout<<233<<endl;
#define endl '\n'
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef long double ld;
// mt19937 rnd(time(0));
const int inf = 0x3f3f3f3f;//1061109567 > 1e9
const ll linf = 0x3f3f3f3f3f3f3f3f;
const double eps = 1e-7;
const double pi = 3.14159265358979;
const int maxn = 5e5 + 5;
const int maxm = 1e3 + 5;
const int mod = 1e9 + 7; int a[maxn];
const int k = 750;
int sum[k][k];
int main()
{
// double pp = clock();
// freopen("233.in", "r", stdin);
// freopen("233.out", "w", stdout);
ios_base::sync_with_stdio(0);
cin.tie(0);cout.tie(0); int q; cin >> q;
int o, x, y;
while(q--)
{
cin >> o >> x >> y;
if(o == 1)
{
a[x] += y;
for(int i = 1; i < k; ++i)sum[i][x % i] += y;
}
else
{
if(x >= k)
{
int ans = 0;
for(int i = y; i <= 500000; i += x)ans += a[i];
cout << ans << endl;
}
else
{
cout << sum[x][y] << endl;
} } } // cout << endl << (clock() - pp) / CLOCKS_PER_SEC << endl;
return 0;
}

G Indie Album

貌似是AC自动机的题,,,没开字符串的专题,,先扔了,,,

(end...)

Educational Codeforces Round 71的更多相关文章

  1. Educational Codeforces Round 71 (Rated for Div. 2)-F. Remainder Problem-技巧分块

    Educational Codeforces Round 71 (Rated for Div. 2)-F. Remainder Problem-技巧分块 [Problem Description] ​ ...

  2. Educational Codeforces Round 71 (Rated for Div. 2)-E. XOR Guessing-交互题

    Educational Codeforces Round 71 (Rated for Div. 2)-E. XOR Guessing-交互题 [Problem Description] ​ 总共两次询 ...

  3. Educational Codeforces Round 71 (Rated for Div. 2)E. XOR Guessing

    一道容斥题 如果直接做就是找到所有出现过递减的不同排列,当时硬钢到自闭,然后在凯妹毁人不倦的教导下想到可以容斥做,就是:所有的排列设为a,只考虑第一个非递减设为b,第二个非递减设为c+两个都非递减的情 ...

  4. Educational Codeforces Round 71 (Rated for Div. 2) E XOR Guessing (二进制分组,交互)

    E. XOR Guessing time limit per test1 second memory limit per test256 megabytes inputstandard input o ...

  5. [暴力] Educational Codeforces Round 71 (Rated for Div. 2) B. Square Filling (1207B)

    题目:http://codeforces.com/contest/1207/problem/B   B. Square Filling time limit per test 1 second mem ...

  6. [贪心,dp] Educational Codeforces Round 71 (Rated for Div. 2) C. Gas Pipeline (1207C)

    题目:http://codeforces.com/contest/1207/problem/C   C. Gas Pipeline time limit per test 2 seconds memo ...

  7. Educational Codeforces Round 71 (Rated for Div. 2)

    传送门 A.There Are Two Types Of Burgers 签到. B.Square Filling 签到 C.Gas Pipeline 每个位置只有"高.低"两种状 ...

  8. Educational Codeforces Round 71 (Rated for Div. 2) Solution

    A. There Are Two Types Of Burgers 题意: 给一些面包,鸡肉,牛肉,你可以做成鸡肉汉堡或者牛肉汉堡并卖掉 一个鸡肉汉堡需要两个面包和一个鸡肉,牛肉汉堡需要两个面包和一个 ...

  9. Remainder Problem(分块) Educational Codeforces Round 71 (Rated for Div. 2)

    引用:https://blog.csdn.net/qq_41879343/article/details/100565031 下面代码写错了,注意要上面这种.查:2  800  0,下面代码就错了. ...

随机推荐

  1. 004——转载—Word2016“此功能看似已中断 并需要修复”问题解决办法

    解决办法如下: 在Win10系统上安装 Office 2016 之后,每次打开Word文档可能都会提示“很抱歉,此功能看似已中断,并需要修复,请使用Windows 控制面板中的“程序和功能”选项修复M ...

  2. 关于windbg报错"No symbols for ntdll. Cannot continue."问题

    最近我写个例子程序研究下某个异常情况,故意制造了个崩溃.然后分析dmp文件. 当我执行!address -summary命令想观察下进程当前内存情况时,去报如下错误: 0:000> !addre ...

  3. 使用gitstats分析git 仓库代码

    gitstats 是一个很不错的git 代码提交分析工具,可以帮助我们生成图表统计结果 工具文档信息 gitstats http://gitstats.sourceforge.net/ 安装 使用ce ...

  4. Huawei Honorcup Marathon 2 垫底记

    先放链接: Huawei Honorcup Marathon 2 在 CF 上面看到这个比赛,就去玩了一下. 一开始的做法时先选一个块,然后不断看其它的每一个块拼在哪里的误差最小,然后拼上去.误差函数 ...

  5. [JLOI 2015]骗我呢

    传送门 Description 求给\(n*m\)的矩阵填数的方案数 满足: \[ 1\leq x_{i,j}\leq m \] \[ x_{i,j}<x_{i,j+1} \] \[ x_{i, ...

  6. go 指南学习笔记

    1   If  for 后面没有小括号.后面的花括号,要在当前行,并且中间有内容,右花括号要单独一行. 因为go会格式化代码,自动插入分号. 2 函数和方法的区别: 方法需要有一个接受者(select ...

  7. 刷题记录:[网鼎杯]Fakebook

    目录 刷题记录:[网鼎杯]Fakebook 一.涉及知识点 1.敏感文件泄露 2.sql注入 二.解题方法 刷题记录:[网鼎杯]Fakebook 题目复现链接:https://buuoj.cn/cha ...

  8. redis-sentinel 高可用方案实践

    近期公司的一块核心业务使用redis作为配置转发中心,存在单点问题,考虑服务的可靠性.针对业务需求,我们确定了我们的需求: 异地跨机房容灾 故障自动切换 尽可能高的保证数据不丢失 针对以上需求,我们分 ...

  9. em,rem,px的区别,以及实现原理?

    px像素(Pixel).相对长度单位.像素px是相对于显示器屏幕分辨率而言的.em是相对长度单位.相对于当前对象内文本的字体尺寸举个例子:比如说当前容器`font-size:16px;`则`1em`就 ...

  10. gradle 使用maven repository 的设置

    repositories {    //Maven中心库(http://repo1.maven.org/maven2)    mavenCentral() //本地库,local repository ...