题目:

题目链接:https://www.luogu.com.cn/problem/P5666

小简单正在学习离散数学,今天的内容是图论基础,在课上他做了如下两条笔记:

  1. 一个大小为 \(n\) 的树由 \(n\) 个结点与 \(n − 1\) 条无向边构成,且满足任意两个结点间有且仅有一条简单路径。在树中删去一个结点及与它关联的边,树将分裂为若干个子树;而在树中删去一条边(保留关联结点,下同),树将分裂为恰好两个子树。
  2. 对于一个大小为 \(n\) 的树与任意一个树中结点 \(c\),称 \(c\) 是该树的重心当且仅当在树中删去 \(c\) 及与它关联的边后,分裂出的所有子树的大小均不超过 \(\lfloor \frac{n}{2} \rfloor\)(其中 \(\lfloor x \rfloor\) 是下取整函数)。对于包含至少一个结点的树,它的重心只可能有 1 或 2 个。

课后老师给出了一个大小为 \(n\) 的树 \(S\),树中结点从 \(1 \sim n\) 编号。小简单的课后作业是求出 \(S\) 单独删去每条边后,分裂出的两个子树的重心编号和之和。即:

\[\sum_{(u,v) \in E} \left( \sum_{1 \leq x \leq n \atop 且 x 号点是 S'_u 的重心} x + \sum_{1 \leq y \leq n \atop 且 y 号点是 S'_v 的重心} y \right)
\]

上式中,\(E\) 表示树 \(S\) 的边集,\((u,v)\) 表示一条连接 \(u\) 号点和 \(v\) 号点的边。\(S'_u\) 与 \(S'_v\) 分别表示树 \(S\) 删去边 \((u,v)\) 后,\(u\) 号点与 \(v\) 号点所在的被分裂出的子树。

小简单觉得作业并不简单,只好向你求助,请你教教他。

思路:

总算\(A\)了\(qwq\),我太菜了。

考虑每一个点能有哪些边可以对他做贡献。

假设现在树根为\(1\),分两种情况:

  • 如果我们不在\(1\)号节点的重儿子中割边,那么我们只要保证割边之后这棵树的大小不小于\(2\times\)重儿子大小即可。

    我们设割去边的另一棵树的大小为\(t\),那么也就是说我们只要保证\(2\times max1\leq n-t\),也就是\(t\leq n-2\times max1\)。

  • 如果我们在\(1\)号节点的重儿子重割边,那么\(1\)号节点的重儿子可能改变也可能不改变。

    如果改变,设\(max2\)表示\(1\)号节点原来的第二大子树的大小,那么我们需要满足\(2\times max2\leq n-t\),也就是\(t\leq n-2\times max2\)。

    如果不改变,那么我们需要满足\(2\times (max1-t)\leq n-t\),也就是\(t\geq 2\times max1-n\)

    综上,在\(1\)号节点的重儿子重割边只要满足\(2\times max1-n\leq t\leq n-2\times max2\)即可。

那么我们如果可以求出\(1\)号节点每一颗子树的大小,以及在每一棵子树内的有多少个大小为\(t\)的子树,并且支持区间查询(这样就可以求出一颗子树内有多少个子树大小取值在任意区间\([l,r]\)了),那么就可以完成这道题。

我们可以用主席树来维护以\(1\)为根时,\(dfs\)序在\([x,y]\)之间的所有节点,有多少个大小在\([l,r]\)之内。这样就可以直接完成\(1\)为根的计算。

考虑换根,我们把根从\(1\to x\)时,我们发现,以\(x\)为根的子树分为两种:以\(1\)为根时,在\(x\)的子树下的所有子树 和 换根后\(1\)与\(1\)的其他子树所构成的一颗子树。此时求前者的\(t\)是没有问题的,但是要求后者的\(t\),我们考虑用整棵树的\(t\)的取值个数\(-\)前者的\(t\)的取值个数即可。

整棵树的\(t\)的取值个数可以用树状数组动态维护。

累计答案时分类讨论一下当前节点的重儿子是前者还是后者即可。

时间复杂度\(O(n\log n)\)

代码:

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long ll; const int N=300010;
int T,n,tot,head[N],size[N],id[N],rk[N],root[N];
ll ans; struct edge
{
int next,to,dis;
}e[N*2]; struct Treenode
{
int lc,rc,cnt;
}; struct BIT
{
int c[N]; void clr()
{
memset(c,0,sizeof(c));
} void add(int x,int val)
{
if (x<=0) return;
for (int i=x;i<=n;i+=i&-i)
c[i]+=val;
} int ask(int x)
{
if (x<=0) return 0;
int sum=0;
for (int i=x;i;i-=i&-i)
sum+=c[i];
return sum;
}
}bit; struct Tree
{
Treenode tree[N*50];
int tot; void clr()
{
memset(tree,0,sizeof(tree));
tot=0;
} int build(int l,int r)
{
int p=++tot;
if (l==r) return p;
int mid=(l+r)>>1;
tree[p].lc=build(l,mid);
tree[p].rc=build(mid+1,r);
return p;
} int update(int now,int l,int r,int k)
{
int p=++tot;
tree[p]=tree[now]; tree[p].cnt++;
if (l==r) return p;
int mid=(l+r)>>1;
if (k<=mid) tree[p].lc=update(tree[now].lc,l,mid,k);
else tree[p].rc=update(tree[now].rc,mid+1,r,k);
return p;
} int ask(int nowl,int nowr,int l,int r,int ql,int qr)
{
if (ql==l && qr==r)
return tree[nowr].cnt-tree[nowl].cnt;
if (ql>qr) return 0;
int mid=(l+r)>>1;
if (qr<=mid) return ask(tree[nowl].lc,tree[nowr].lc,l,mid,ql,qr);
else if (ql>mid) return ask(tree[nowl].rc,tree[nowr].rc,mid+1,r,ql,qr);
else return ask(tree[nowl].lc,tree[nowr].lc,l,mid,ql,mid)+ask(tree[nowl].rc,tree[nowr].rc,mid+1,r,mid+1,qr);
}
}Tree; void add(int from,int to)
{
e[++tot].to=to;
e[tot].next=head[from];
head[from]=tot;
} int dfs1(int x,int fa)
{
size[x]=1; id[x]=++tot; rk[tot]=x;
for (int i=head[x];~i;i=e[i].next)
if (e[i].to!=fa) size[x]+=dfs1(e[i].to,x);
bit.add(size[x],1);
// root[id[x]]=Tree.update(root[id[x]-1],1,n,size[x]);
return size[x];
} void add_ans(int x,int fa)
{
int max1=0,max2=0,pos;
for (int i=head[x];~i;i=e[i].next)
{
int v=e[i].to;
if (size[v]>max1) max2=max1,max1=size[v],pos=v;
else if (size[v]>max2) max2=size[v];
}
if (pos!=fa)
{
int cnt_in=Tree.ask(root[id[pos]-1],root[id[pos]+size[pos]-1],1,n,1,n-max1*2);
int cnt_all=bit.ask(n-max1*2);
int cnt=Tree.ask(root[id[pos]-1],root[id[pos]+size[pos]-1],1,n,max(max1*2-n,1),n-max2*2);
ans+=1LL*x*(cnt_all-cnt_in+cnt);
}
else
{
int cnt=Tree.ask(root[id[x]],root[id[x]+size[x]-1],1,n,1,n-max1*2);
int cnt_all=bit.ask(n-max2*2)-bit.ask(max(max1*2-n-1,0));
int cnt_in=Tree.ask(root[id[x]],root[id[x]+size[x]-1],1,n,max(max1*2-n,1),n-max2*2);
ans+=1LL*x*(cnt_all-cnt_in+cnt);
}
} void dfs2(int x,int fa)
{
bit.add(size[x],-1);
add_ans(x,fa);
int Cpy=size[x];
for (int i=head[x];~i;i=e[i].next)
{
int v=e[i].to;
if (v!=fa)
{
size[x]=n-size[v];
bit.add(size[x],1);
dfs2(e[i].to,x);
bit.add(size[x],-1);
}
}
size[x]=Cpy;
bit.add(size[x],1);
} int main()
{
scanf("%d",&T);
while (T--)
{
memset(head,-1,sizeof(head));
tot=ans=0;
scanf("%d",&n);
Tree.clr(); bit.clr();
root[0]=Tree.build(1,n);
for (int i=1,x,y;i<n;i++)
{
scanf("%d%d",&x,&y);
add(x,y); add(y,x);
}
tot=0;
dfs1(1,0);
for (int i=1;i<=n;i++)
root[i]=Tree.update(root[i-1],1,n,size[rk[i]]);
dfs2(1,0);
printf("%lld\n",ans);
}
return 0;
}

【CSP-S 2019】【洛谷P5666】树的重心【主席树】【树状数组】【dfs】的更多相关文章

  1. 洛谷 P3377 【模板】左偏树(可并堆)

    洛谷 P3377 [模板]左偏树(可并堆) 题目描述 如题,一开始有N个小根堆,每个堆包含且仅包含一个数.接下来需要支持两种操作: 操作1: 1 x y 将第x个数和第y个数所在的小根堆合并(若第x或 ...

  2. 洛谷P3377 【模板】左偏树(可并堆) 题解

    作者:zifeiy 标签:左偏树 这篇随笔需要你在之前掌握 堆 和 二叉树 的相关知识点. 堆支持在 \(O(\log n)\) 的时间内进行插入元素.查询最值和删除最值的操作.在这里,如果最值是最小 ...

  3. 【BZOJ】2434: [Noi2011]阿狸的打字机 AC自动机+树状数组+DFS序

    [题意]阿狸喜欢收藏各种稀奇古怪的东西,最近他淘到一台老式的打字机.打字机上只有28个按键,分别印有26个小写英文字母和'B'.'P'两个字母. 经阿狸研究发现,这个打字机是这样工作的: l 输入小写 ...

  4. 括号树 noip(csp??) 2019 洛谷 P5658

    洛谷AC通道 本题,题目长,但是实际想起来十分简单. 首先,对于树上的每一个后括号,我们很容易知道,他的贡献值等于上一个后括号的贡献值 + 1.(当然,前提是要有人跟他匹配,毕竟题目中要求了,是不同的 ...

  5. 格雷码 CSP(NOIP??)2019 洛谷 P5657

    洛谷AC通道! 多年过后,重新来看这道D1T1,20min不到AC,再回忆起当初考场三小时的抓耳挠腮,不禁感慨万千啊!! 发篇题解记录一下. 思路:直接dfs模拟即可(二进制找规律是不可能的, 这辈子 ...

  6. 洛谷P3434 [POI2006]KRA-The Disks(线段树)

    洛谷题目传送门 \(O(n)\)的正解算法对我这个小蒟蒻真的还有点思维难度.洛谷题解里都讲得很好. 考试的时候一看到300000就直接去想各种带log的做法了,反正不怕T...... 我永远只会有最直 ...

  7. 洛谷P2617 Dynamic Ranking(主席树,树套树,树状数组)

    洛谷题目传送门 YCB巨佬对此题有详细的讲解.%YCB%请点这里 思路分析 不能套用静态主席树的方法了.因为的\(N\)个线段树相互纠缠,一旦改了一个点,整个主席树统统都要改一遍...... 话说我真 ...

  8. 洛谷.3733.[HAOI2017]八纵八横(线性基 线段树分治 bitset)

    LOJ 洛谷 最基本的思路同BZOJ2115 Xor,将图中所有环的异或和插入线性基,求一下线性基中数的异或最大值. 用bitset优化一下,暴力的复杂度是\(O(\frac{qmL^2}{w})\) ...

  9. 洛谷AT2046 Namori(思维,基环树,树形DP)

    洛谷题目传送门 神仙思维题还是要写点东西才好. 树 每次操作把相邻且同色的点反色,直接这样思考会发现状态有很强的后效性,没办法考虑转移. 因为树是二分图,所以我们转化模型:在树的奇数层的所有点上都有一 ...

随机推荐

  1. proc 目录介绍

    /proc/apm  高级电源管理(APM)版本信息及电池相关状态信息,通常由apm命令使用: /proc/buddyinfo  用于诊断内存碎片问题的相关信息文件: /proc/cmdline  在 ...

  2. Spring全家桶注解一览(精选)

    废话 最近想整理一波Spring注解相关的文章,虽然写CURD就只涉及到那些常用的注解.但是笔者我也想去了解一下其他注解,丰富下自己的知识面(提升一下逼格!). 就想在网上搜了半天,好像大家的都差不多 ...

  3. c++ map容器使用及问题

    C++ STL库map容器一些总结,欢迎大家指正补充. map容器由两部分组成,分别为关键字(Key)和值(Value),关键字和值都可以声明为任意类型的数据,注意:关键字唯一,不能重复!使用需包含头 ...

  4. 数组转JSON对象

    代码: function arrayToJson(arr){ var js={}; for(var i=0;i<arr.length;i++){ js[arr[i].name]=arr[i].v ...

  5. Python解释器安装与环境变量添加

    Python解释器安装与环境变量添加 Python解释器安装(3.6和2.7): www.python.org这个是python解释器的官网,一定要牢记. 鉴于市场上有两种python版本(2和3), ...

  6. Django REST Framework批量更新rest_framework_extensions

    Django REST framework 是一套基于Django框架编写RESTful风格API的组件. 其中mixins配合viewsets能极其方便简化对数据的增删改查, 但本身并没有对数据的批 ...

  7. JavaJDK多任务执行框架(六)

    class Temp extends Thread { public void run() { System.out.println("run"); } } public clas ...

  8. Spring AOP创建Throwdvice实例

    1.异常发生的时候,通知某个服务对象做处理 2.实现throwsAdvice接口 接口实现: public interface IHello { public void sayHello(String ...

  9. Java File类与IO流

    File 类 java.io.File 文件和目录路径名的抽象表示形式, 对文件或目录进行操作 构造方法: File(File parent, String child) : 根据 parent 抽象 ...

  10. 【转载】Java对象的生命周期

    Java对象的生命周期 在Java中,对象的生命周期包括以下几个阶段: 1.      创建阶段(Created) 2.      应用阶段(In Use) 3.      不可见阶段(Invisib ...