本章节我们主要结合前面所学的知识点来介绍Python数据结构。
*****************************
1.列表
Python中列表是可变的,这是它区别于字符串和元组的最重要的特点,一句话概括即:列表可以修改,而字符串和元组不能。
以下是 Python 中列表的方法:
方法 描述
list.append(x) 把一个元素添加到列表的结尾,相当于 a[len(a):] = [x]。
list.extend(L) 通过添加指定列表的所有元素来扩充列表,相当于 a[len(a):] = L。
list.insert(i, x) 在指定位置插入一个元素。第一个参数是准备插入到其前面的那个元素的索引,例如 a.insert(0, x) 会插入到整个列表之前,而 a.insert(len(a), x) 相当于 a.append(x) 。
list.remove(x) 删除列表中值为 x 的第一个元素。如果没有这样的元素,就会返回一个错误。
list.pop([i]) 从列表的指定位置移除元素,并将其返回。如果没有指定索引,a.pop()返回最后一个元素。元素随即从列表中被移除。(方法中 i 两边的方括号表示这个参数是可选的,而不是要求你输入一对方括号,你会经常在 Python 库参考手册中遇到这样的标记。)
list.clear() 移除列表中的所有项,等于del a[:]。
list.index(x) 返回列表中第一个值为 x 的元素的索引。如果没有匹配的元素就会返回一个错误。
list.count(x) 返回 x 在列表中出现的次数。
list.sort() 对列表中的元素进行排序。
list.reverse() 倒排列表中的元素。
list.copy() 返回列表的浅复制,等于a[:]。
下面示例演示了列表的大部分方法:
>>> a = [66.25, 333, 333, 1, 1234.5]
>>> print(a.count(333), a.count(66.25), a.count('x'))
2 1 0 # 出现的次数
>>> a.insert(2, -1) # 下标2插入-1
>>> a.append(333) # 末尾追加333
>>> a
[66.25, 333, -1, 333, 1, 1234.5, 333]
>>> a.index(333) # 返回第一个333的索引
1
>>> a.remove(333) # 删除列表中值为 333 的第一个元素
>>> a
[66.25, -1, 333, 1, 1234.5, 333]
>>> a.reverse() #转置
>>> a
[333, 1234.5, 1, 333, -1, 66.25]
>>> a.sort() # 默认升序排序
>>> a
[-1, 1, 66.25, 333, 333, 1234.5]
注意:类似 insert, remove 或 sort 等修改列表的方法没有返回值。
*****************************
2.将列表当做堆栈使用
列表方法使得列表可以很方便的作为一个堆栈来使用,堆栈作为特定的数据结构,最先进入的元素最后一个被释放(后进先出)。用 append() 方法可以把一个元素添加到堆栈顶。用不指定索引的 pop() 方法可以把一个元素从堆栈顶释放出来。例如:
>>> stack = [3, 4, 5]
>>> stack.append(6)
>>> stack.append(7)
>>> stack
[3, 4, 5, 6, 7]
>>> stack.pop()
7
>>> stack
[3, 4, 5, 6]
>>> stack.pop()
6
>>> stack.pop()
5
>>> stack
[3, 4]
*****************************
3.将列表当作队列使用
也可以把列表当做队列用,只是在队列里第一加入的元素,第一个取出来;但是拿列表用作这样的目的效率不高。在列表的最后添加或者弹出元素速度快,然而在列表里插入或者从头部弹出速度却不快(因为所有其他的元素都得一个一个地移动)。
>>> from collections import deque
>>> queue = deque(["Eric", "John", "Michael"])
>>> queue.append("Terry") # Terry arrives
>>> queue.append("Graham") # Graham arrives
>>> queue.popleft() # The first to arrive now leaves
'Eric'
>>> queue.popleft() # The second to arrive now leaves
'John'
>>> queue # Remaining queue in order of arrival
deque(['Michael', 'Terry', 'Graham'])
*****************************
4.列表推导式
列表推导式提供了从序列创建列表的简单途径。通常应用程序将一些操作应用于某个序列的每个元素,用其获得的结果作为生成新列表的元素,或者根据确定的判定条件创建子序列。
每个列表推导式都在 for 之后跟一个表达式,然后有零到多个 for 或 if 子句。返回结果是一个根据表达从其后的 for 和 if 上下文环境中生成出来的列表。如果希望表达式推导出一个元组,就必须使用括号。
这里我们将列表中每个数值乘三,获得一个新的列表:
>>> vec = [2, 4, 6]
>>> [3*x for x in vec]
[6, 12, 18]
现在我们玩一点小花样:
>>> [[x, x**2] for x in vec]
[[2, 4], [4, 16], [6, 36]]
这里我们对序列里每一个元素逐个调用某方法:
>>> freshfruit = [' banana', ' loganberry ', 'passion fruit ']
>>> [weapon.strip() for weapon in freshfruit]
['banana', 'loganberry', 'passion fruit']
我们可以用 if 子句作为过滤器:# vec = [2, 4, 6]
# 列表推导式提供了从序列创建列表的简单途径。
>>> [3*x for x in vec if x > 3]
[12, 18]
>>> [3*x for x in vec if x < 2]
[]
以下是一些关于循环和其它技巧的演示:
>>> vec1 = [2, 4, 6]
>>> vec2 = [4, 3, -9]
>>> [x*y for x in vec1 for y in vec2]
[8, 6, -18, 16, 12, -36, 24, 18, -54] # 遍历相乘
>>> [x+y for x in vec1 for y in vec2]
[6, 5, -7, 8, 7, -5, 10, 9, -3] # 遍历相加
>>> [vec1[i]*vec2[i] for i in range(len(vec1))] # (0 1 2)
[8, 12, -54]
列表推导式可以使用复杂表达式或嵌套函数:
# round() 方法返回浮点数x的四舍五入值,i精确到小数点后i位。
>>> [str(round(355/113, i)) for i in range(1, 6)]
['3.1', '3.14', '3.142', '3.1416', '3.14159']
*****************************
5.嵌套列表解析
Python的列表还可以嵌套。
以下实例展示了3X4的矩阵列表:
>>> matrix = [
... [1, 2, 3, 4],
... [5, 6, 7, 8],
... [9, 10, 11, 12],
... ]
以下实例将3X4的矩阵列表转换为4X3列表:
>>> [[row[i] for row in matrix] for i in range(4)]
[[1, 5, 9], [2, 6, 10], [3, 7, 11], [4, 8, 12]]
以下实例也可以使用以下方法来实现:
>>> transposed = []
>>> for i in range(4): # i=0时,[1] [2] [3] [4]
... transposed.append([row[i] for row in matrix])
...
>>> transposed
[[1, 5, 9], [2, 6, 10], [3, 7, 11], [4, 8, 12]]
另外一种实现方法:
>>> transposed = []
>>> for i in range(4):
... # the following 3 lines implement the nested listcomp
... transposed_row = []
... for row in matrix:
... transposed_row.append(row[i])
... transposed.append(transposed_row)
...
>>> transposed
[[1, 5, 9], [2, 6, 10], [3, 7, 11], [4, 8, 12]]
*****************************
5.del 语句
使用 del 语句可以从一个列表中依索引而不是值来删除一个元素。这与使用 pop() 返回一个值不同。可以用 del 语句从列表中删除一个切割,或清空整个列表(我们以前介绍的方法是给该切割赋一个空列表)。例如:
>>> a = [-1, 1, 66.25, 333, 333, 1234.5]
>>> del a[0]
>>> a
[1, 66.25, 333, 333, 1234.5]
>>> del a[2:4]
>>> a
[1, 66.25, 1234.5]
>>> del a[:]
>>> a
[]
也可以用 del 删除实体变量:
>>> del a
*****************************
6.元组和序列
元组由若干逗号分隔的值组成,例如:
>>> t = 12345, 54321, 'hello!'
>>> t[0]
12345
>>> t
(12345, 54321, 'hello!')
>>> # Tuples may be nested:
... u = t, (1, 2, 3, 4, 5)
>>> u
((12345, 54321, 'hello!'), (1, 2, 3, 4, 5))
如你所见,元组在输出时总是有括号的,以便于正确表达嵌套结构。在输入时可能有或没有括号, 不过括号通常是必须的(如果元组是更大的表达式的一部分)。
*****************************
7.集合
集合是一个无序不重复元素的集。基本功能包括关系测试和消除重复元素。
可以用大括号({})创建集合。注意:如果要创建一个空集合,你必须用 set() 而不是 {} ;后者创建一个空的字典,下一节我们会介绍这个数据结构。
以下是一个简单的演示:
>>> basket = {'apple', 'orange', 'apple', 'pear', 'orange', 'banana'}
>>> print(basket) # 删除重复的
{'orange', 'banana', 'pear', 'apple'}
>>> 'orange' in basket # 检测成员
True
>>> 'crabgrass' in basket
False
>>> # 以下演示了两个集合的操作
>>> a = set('abracadabra')
>>> b = set('alacazam')
>>> a # a 中唯一的字母
{'a', 'r', 'b', 'c', 'd'}
>>> a - b # 在 a 中的字母,但不在 b 中
{'r', 'd', 'b'}
>>> a | b # 在 a 或 b 中的字母
{'a', 'c', 'r', 'd', 'b', 'm', 'z', 'l'}
>>> a & b # 在 a 和 b 中都有的字母
{'a', 'c'}
>>> a ^ b # 在 a 或 b 中的字母,但不同时在 a 和 b 中
{'r', 'd', 'b', 'm', 'z', 'l'}
集合也支持推导式:
>>> a = {x for x in 'abracadabra' if x not in 'abc'}
>>> a
{'r', 'd'}
*****************************
8.字典
另一个非常有用的 Python 内建数据类型是字典。
序列是以连续的整数为索引,与此不同的是,字典以关键字为索引,关键字可以是任意不可变类型,通常用字符串或数值。
理解字典的最佳方式是把它看做无序的键=>值对集合。在同一个字典之内,关键字必须是互不相同。
一对大括号创建一个空的字典:{}。
这是一个字典运用的简单例子:
>>> tel = {'jack': 4098, 'sape': 4139}
>>> tel['guido'] = 4127
>>> tel
{'sape': 4139, 'guido': 4127, 'jack': 4098}
>>> tel['jack'] #注意以列表的形式展现
4098
>>> del tel['sape']
>>> tel['irv'] = 4127 # 以列表的形式插入
>>> tel
{'guido': 4127, 'irv': 4127, 'jack': 4098}
>>> list(tel.keys())
['irv', 'guido', 'jack']
>>> sorted(tel.keys())
['guido', 'irv', 'jack']
>>> 'guido' in tel
True
>>> 'jack' not in tel
False
构造函数 dict() 直接从键值对元组列表中构建字典。如果有固定的模式,列表推导式指定特定的键值对:
>>> dict([('sape', 4139), ('guido', 4127), ('jack', 4098)])
{'sape': 4139, 'jack': 4098, 'guido': 4127}
此外,字典推导可以用来创建任意键和值的表达式词典:
>>> {x: x**2 for x in (2, 4, 6)}
{2: 4, 4: 16, 6: 36}
如果关键字只是简单的字符串,使用关键字参数指定键值对有时候更方便:
>>> dict(sape=4139, guido=4127, jack=4098)
{'sape': 4139, 'jack': 4098, 'guido': 4127}
遍历技巧
在字典中遍历时,关键字和对应的值可以使用 items() 方法同时解读出来:
>>> knights = {'gallahad': 'the pure', 'robin': 'the brave'}
>>> for k, v in knights.items():
... print(k, v)
...
gallahad the pure
robin the brave
在序列中遍历时,索引位置和对应值可以使用 enumerate() 函数同时得到:
>>> for i, v in enumerate(['tic', 'tac', 'toe']):
... print(i, v)
...
0 tic
1 tac
2 toe
同时遍历两个或更多的序列,可以使用 zip() 组合:
>>> questions = ['name', 'quest', 'favorite color']
>>> answers = ['lancelot', 'the holy grail', 'blue']
>>> for q, a in zip(questions, answers):
... print('What is your {0}? It is {1}.'.format(q, a))
...
What is your name? It is lancelot.
What is your quest? It is the holy grail.
What is your favorite color? It is blue.
要反向遍历一个序列,首先指定这个序列,然后调用 reversed() 函数:
>>> for i in reversed(range(1, 10, 2)):
... print(i)
...
9
7
5
3
1
要按顺序遍历一个序列,使用 sorted() 函数返回一个已排序的序列,并不修改原值:
>>> basket = ['apple', 'orange', 'apple', 'pear', 'orange', 'banana']
>>> for f in sorted(set(basket)):
... print(f)
...
apple
banana
orange
pear
- 多线程爬坑之路-学习多线程需要来了解哪些东西?(concurrent并发包的数据结构和线程池,Locks锁,Atomic原子类)
前言:刚学习了一段机器学习,最近需要重构一个java项目,又赶过来看java.大多是线程代码,没办法,那时候总觉得多线程是个很难的部分很少用到,所以一直没下决定去啃,那些年留下的坑,总是得自己跳进去填 ...
- 一起学 Java(三) 集合框架、数据结构、泛型
一.Java 集合框架 集合框架是一个用来代表和操纵集合的统一架构.所有的集合框架都包含如下内容: 接口:是代表集合的抽象数据类型.接口允许集合独立操纵其代表的细节.在面向对象的语言,接口通常形成一个 ...
- 深入浅出Redis-redis底层数据结构(上)
1.概述 相信使用过Redis 的各位同学都很清楚,Redis 是一个基于键值对(key-value)的分布式存储系统,与Memcached类似,却优于Memcached的一个高性能的key-valu ...
- 算法与数据结构(十五) 归并排序(Swift 3.0版)
上篇博客我们主要聊了堆排序的相关内容,本篇博客,我们就来聊一下归并排序的相关内容.归并排序主要用了分治法的思想,在归并排序中,将我们需要排序的数组进行拆分,将其拆分的足够小.当拆分的数组中只有一个元素 ...
- 算法与数据结构(十三) 冒泡排序、插入排序、希尔排序、选择排序(Swift3.0版)
本篇博客中的代码实现依然采用Swift3.0来实现.在前几篇博客连续的介绍了关于查找的相关内容, 大约包括线性数据结构的顺序查找.折半查找.插值查找.Fibonacci查找,还包括数结构的二叉排序树以 ...
- 算法与数据结构(九) 查找表的顺序查找、折半查找、插值查找以及Fibonacci查找
今天这篇博客就聊聊几种常见的查找算法,当然本篇博客只是涉及了部分查找算法,接下来的几篇博客中都将会介绍关于查找的相关内容.本篇博客主要介绍查找表的顺序查找.折半查找.插值查找以及Fibonacci查找 ...
- 算法与数据结构(八) AOV网的关键路径
上篇博客我们介绍了AOV网的拓扑序列,请参考<数据结构(七) AOV网的拓扑排序(Swift面向对象版)>.拓扑序列中包括项目的每个结点,沿着拓扑序列将项目进行下去是肯定可以将项目完成的, ...
- 算法与数据结构(七) AOV网的拓扑排序
今天博客的内容依然与图有关,今天博客的主题是关于拓扑排序的.拓扑排序是基于AOV网的,关于AOV网的概念,我想引用下方这句话来介绍: AOV网:在现代化管理中,人们常用有向图来描述和分析一项工程的计划 ...
- 掌握javascript中的最基础数据结构-----数组
这是一篇<数据结构与算法javascript描述>的读书笔记.主要梳理了关于数组的知识.部分内容及源码来自原作. 书中第一章介绍了如何配置javascript运行环境:javascript ...
随机推荐
- JavaScript Web API 全选反选案例
全选反选 全选和反选功能,在开发中可以说是应用得非常多的,以下通过案例分解,学习如何使用JS实现全选反选功能. 该功能可分为如下三大步骤: 1.全选 1.1 获取父checkbox,注册点击事件 1. ...
- node-red 流程的导入导出
流程的导入导出 流程的导出 选中所要导出的流程,点击右上角三条杠按钮 有两个选项,导出到剪贴板和库 1. 导出到剪贴板 导出到剪贴板可以复制,粘贴到任何地方 [{,,,,,,"wires&q ...
- 二叉树&满二叉树与完全二叉树
二叉树的定义 二叉树(Binary Tree)是n(n≥0)个元素的有限集合,该集合为空或者为由一个称为"根"的元素及两个不相交的.被分别称为左子树和右子树的二叉树组成 二叉树的基 ...
- 解决此报错:Cannot create Woodstox XMLInputFactory: java.lang.NoClassDefFoundError: com/ctc/wstx/stax/WstxInput
最近在研究webservice服务的技术,可是写完webservice例子后,项目正常启动,但是在输入url地址后报如下的错误: Cannot create Woodstox XMLInputFact ...
- js两个变量互换值
js两个变量交换值 这个问题看似很基础,但是有很多的实现方式,你知道的有多少呢,网上也有很多的方法,下面就来总结一下 中间变量(临时变量) 临时变量其实很好理解,通过一个中间变量进行交换值 var s ...
- leetcode-45.跳跃游戏II(hard)
给定一个非负整数数组,你最初位于数组的第一个位置. 数组中的每个元素代表你在该位置可以跳跃的最大长度. 你的目标是使用最少的跳跃次数到达数组的最后一个位置. 示例: 输入: [2,3,1,1,4]输出 ...
- unity4.3.4firedrillonline项目首次整合问题总结
零.资源导入后把所有资源模型拖到场景中去,并reset Transform,使场景展现原有样子. 一.资源导入之后发现项目场景是黑的,添加灯光之后场景中大部分仍然是黑的(并没有光照的效果) 可能原因: ...
- c# 搜索字符串
- golang读写文件的几种方式
golang中处理文件有很多种方式,下面我们来看看. (1)使用os模块 先来看看如何查看文件属性 package main import ( "fmt" "os&quo ...
- Linux/Windows下安装SonarCube
1. 下载合适的版本,尽量不要下载最新的版本,最新的版本要求Java 11+,如果没有安装最新版的Java的话,尽量用 SonarQube 7.0 以下的版本,SonarQube 7.0是可以用jdk ...