一、以Wordcount为例来分析

1、Wordcount

val lines = sc.textFile()
val words = lines.flatMap(line => line.split(" "))
val pairs = words.map(word => (word, 1))
val counts = pairs.reduceByKey(_ + _)
counts.foreach(count => println(count._1 + ": " + count._2))

2、源码分析

###org.apache.spark/SparkContext.scala
###textFile() /**
* 首先,hadoopFile()方法的调用,会创建一个HadoopRDD,其中的元素,其实是(key,value)pais
* key是hdfs或文本文件的每一行的offset,value是文本行
* 然后对HadoopRDD调用map()方法,会剔除key,只保留value,然后会获得一个MapPartitionRDD
* MapPartitionRDD内部的元素,其实就是一行一行的文本行
* @param path
* @param minPartitions
* @return
*/
def textFile(path: String, minPartitions: Int = defaultMinPartitions): RDD[String] = {
assertNotStopped()
hadoopFile(path, classOf[TextInputFormat], classOf[LongWritable], classOf[Text],
minPartitions).map( pair => pair._2.toString).setName(path)
} ###org.apache.spark.rdd/RDD.scala def flatMap[U: ClassTag](f: T => TraversableOnce[U]): RDD[U] = {
val cleanF = sc.clean(f)
new MapPartitionsRDD[U, T](this, (context, pid, iter) => iter.flatMap(cleanF))
} def map[U: ClassTag](f: T => U): RDD[U] = {
val cleanF = sc.clean(f)
new MapPartitionsRDD[U, T](this, (context, pid, iter) => iter.map(cleanF))
} 其实RDD里是没有reduceByKey的,因此对RDD调用reduceByKey()方法的时候,会触发scala的隐式转换;此时就会在作用域内,寻找隐式转换,
会在RDD中找到rddToPairRDDFunctions()隐式转换,然后将RDD转换为PairRDDFunctions。 implicit def rddToPairRDDFunctions[K, V](rdd: RDD[(K, V)])
(implicit kt: ClassTag[K], vt: ClassTag[V], ord: Ordering[K] = null): PairRDDFunctions[K, V] = {
new PairRDDFunctions(rdd)
} 接着会调用PairRDDFunctions中的reduceByKey()方法; def reduceByKey(partitioner: Partitioner, func: (V, V) => V): RDD[(K, V)] = {
combineByKey[V]((v: V) => v, func, func, partitioner)
} ###org.apache.spark.rdd/RDD.scala def foreach(f: T => Unit) {
val cleanF = sc.clean(f)
sc.runJob(this, (iter: Iterator[T]) => iter.foreach(cleanF))
} foreach调用了runJob方法,一步步追踪runJob方法,首先调用SparkContext的runJob: def runJob[T, U: ClassTag](rdd: RDD[T], func: Iterator[T] => U): Array[U] = {
runJob(rdd, func, 0 until rdd.partitions.size, false)
} … 最后:
def runJob[T, U: ClassTag](
rdd: RDD[T],
func: (TaskContext, Iterator[T]) => U,
partitions: Seq[Int],
allowLocal: Boolean,
resultHandler: (Int, U) => Unit) {
if (stopped) {
throw new IllegalStateException("SparkContext has been shutdown")
}
val callSite = getCallSite
val cleanedFunc = clean(func)
logInfo("Starting job: " + callSite.shortForm)
if (conf.getBoolean("spark.logLineage", false)) {
logInfo("RDD's recursive dependencies:\n" + rdd.toDebugString)
}
// 调用SparkContext,之前初始化时创建的dagScheduler的runJob()方法
dagScheduler.runJob(rdd, cleanedFunc, partitions, callSite, allowLocal,
resultHandler, localProperties.get)
progressBar.foreach(_.finishAll())
rdd.doCheckpoint()
}

16、job触发流程原理剖析与源码分析的更多相关文章

  1. 65、Spark Streaming:数据接收原理剖析与源码分析

    一.数据接收原理 二.源码分析 入口包org.apache.spark.streaming.receiver下ReceiverSupervisorImpl类的onStart()方法 ### overr ...

  2. 66、Spark Streaming:数据处理原理剖析与源码分析(block与batch关系透彻解析)

    一.数据处理原理剖析 每隔我们设置的batch interval 的time,就去找ReceiverTracker,将其中的,从上次划分batch的时间,到目前为止的这个batch interval ...

  3. 18、TaskScheduler原理剖析与源码分析

    一.源码分析 ###入口 ###org.apache.spark.scheduler/DAGScheduler.scala // 最后,针对stage的task,创建TaskSet对象,调用taskS ...

  4. 64、Spark Streaming:StreamingContext初始化与Receiver启动原理剖析与源码分析

    一.StreamingContext源码分析 ###入口 org.apache.spark.streaming/StreamingContext.scala /** * 在创建和完成StreamCon ...

  5. 23、CacheManager原理剖析与源码分析

    一.图解 二.源码分析 ###org.apache.spark.rdd/RDD.scalal ###入口 final def iterator(split: Partition, context: T ...

  6. 22、BlockManager原理剖析与源码分析

    一.原理 1.图解 Driver上,有BlockManagerMaster,它的功能,就是负责对各个节点上的BlockManager内部管理的数据的元数据进行维护, 比如Block的增删改等操作,都会 ...

  7. 21、Shuffle原理剖析与源码分析

    一.普通shuffle原理 1.图解 假设有一个节点上面运行了4个 ShuffleMapTask,然后这个节点上只有2个 cpu core.假如有另外一台节点,上面也运行了4个ResultTask,现 ...

  8. 20、Task原理剖析与源码分析

    一.Task原理 1.图解 二.源码分析 1. ###org.apache.spark.executor/Executor.scala /** * 从TaskRunner开始,来看Task的运行的工作 ...

  9. 19、Executor原理剖析与源码分析

    一.原理图解 二.源码分析 1.Executor注册机制 worker中为Application启动的executor,实际上是启动了这个CoarseGrainedExecutorBackend进程: ...

随机推荐

  1. 深度学习 Bottleneck layer / Bottleneck feature

    最近在学习deeplearning的时候接触到了bottle-neck layer,好奇它的作用于是便扒了一些论文(论文链接放在文末吧),系统的了解一下bottle-neck feature究竟有什么 ...

  2. Sql 脚本文件太大 还原数据库

    sql脚本太大直接在数据库中执行会提示内存不足,我们看生成的脚本文件会发现每隔100条会有一个GO来分隔,这就好说了 在我将数据库的结构连同数据生成一个脚本文件db.sql 后,想在另外的电脑上恢复数 ...

  3. DDL和DML 的区别

    DDL (Data Definition Language 数据定义语言) create table 创建表 alter table 修改表 drop table 删除表 truncate table ...

  4. ③ Python3.0 数字类型

    Python3 的六个标准数据类型中:不可变数据(3 个):Number(数字).String(字符串).Tuple(元组):可变数据(3 个):List(列表).Dictionary(字典).Set ...

  5. python day 11: 类的补充,元类,魔法方法,异常处理

    目录 python day 11 1. 类的补充 1.1 通过反射来查找类,创建对象,设置对象的属性与方法 1.2 类的魔法方法:getitem,setitem 1.3 元类__metaclass__ ...

  6. 【雅思】【绿宝书错词本】List13~24

    List 13 ❤audacious a.大胆的:有冒险精神的:鲁莽的:厚颜无耻的 ❤tramp v.跋涉:踩踏 n.长途跋涉 ❤lexicographer n.词典编纂者 ❤manipulate v ...

  7. iOS配置TARGETS

    说一下背景 自从这个项目不死不活的迭代了2年,从项目搭建到现在,一直都是自己在开发和维护,所以项目结构非常清晰,但是之前的水平写的代码现在看来也是惨不忍睹,不过本人比较懒,也就没有考虑过重构的事情 - ...

  8. SpringBoot中LocalDatetime作为参数和返回值的序列化问题

    欢迎访问我的个人网站 https://www.zhoutao123.com 本文原文地址 https://www.zhoutao123.com/#/blog/article/59 LocalDatet ...

  9. sqlserver 将一个表中的某些字段更新到另一个表中(转载)

    来源:https://blog.csdn.net/qq_23888451/article/details/86615555 https://blog.csdn.net/cyxinda/article/ ...

  10. 白话解说TCP/IP协议三次握手和四次挥手

    白话解说TCP/IP协议三次握手和四次挥手 1.背景 和女朋友异地恋一年多,为了保持感情我提议每天晚上视频聊天一次. 从好上开始,到现在,一年多也算坚持下来了. 1.1.问题 有时候聊天的过程中,我的 ...