1079: [SCOI2008]着色方案

Time Limit: 10 Sec  Memory Limit: 162 MB
Submit: 2237  Solved: 1361
[Submit][Status][Discuss]

Description

  有n个木块排成一行,从左到右依次编号为1~n。你有k种颜色的油漆,其中第i种颜色的油漆足够涂ci个木块。
所有油漆刚好足够涂满所有木块,即c1+c2+...+ck=n。相邻两个木块涂相同色显得很难看,所以你希望统计任意两
个相邻木块颜色不同的着色方案。

Input

  第一行为一个正整数k,第二行包含k个整数c1, c2, ... , ck。

Output

  输出一个整数,即方案总数模1,000,000,007的结果。

Sample Input

3
1 2 3

Sample Output

10

HINT

100%的数据满足:1 <= k <= 15, 1 <= ci <= 5

  这道题挺有趣的,他将DP与记忆化搜索结合在了一起……
  我们做一个假设,假设ci都为1,那么这就是一道状压题了,但是ci<=5,虽然仍然不大,但是状压15位显然扑街。
  让我们回过头在看最基础的暴力,也就是我们去枚举每一位放的颜色,并将它传递给下一层dfs,如果我们分析一下的话我们会发现每一种剩下可涂数量相同的颜色都可以看作等价的,换句话说涂谁都行。那么,我们将状压的方式换一换,不对,不能叫状压了。改为ci剩余1 2 3 4 5 个的颜色有几种,上一个是谁,也就是f[15][15][15][15][15][7]。空间没问题,至于转移,我们利用dfs的思想,使用记忆化搜索,然后对于每一个f,假设当前状态为f[a][b][c][d][e][la]
  则若d!=0且la!=3那么f[a][b][c][d][e][la]+=f[a][b][c][d-1][e+1][2]*d。
  若la=3那么f[a][b][c][d][e][la]+=(d-1)*f[a][b][c][d-1][e+1][2]。
  其余同理。
  不得不说转移数组挺像一道概率DP“抵制克苏恩”的,可惜没有能够应用到这道题来啊。
 #include <iostream>
#include <cstdlib>
#include <cstdio>
#include <cstring>
#include <queue>
#include <algorithm>
#include <cmath>
#include <map>
using namespace std;
int n,t,a[],js[];
long long f[][][][][][],p=;
bool vi[][][][][][];
long long dfs(int a,int b,int c,int d,int e,int la)
{
     
    if(a==&&b==&&c==&&d==&&e==)return ;
    if(vi[a][b][c][d][e][la])return f[a][b][c][d][e][la];
    vi[a][b][c][d][e][la]=;
    if(a)f[a][b][c][d][e][la]+=a*dfs(a-,b+,c,d,e,),f[a][b][c][d][e][la]%=p;
    if(b)
    {
        if(b!=)f[a][b][c][d][e][la]+=(b-(la==))*dfs(a,b-,c+,d,e,);
        else if(la!=)f[a][b][c][d][e][la]+=dfs(a,b-,c+,d,e,);
        f[a][b][c][d][e][la]%=p;
    }
    if(c)
    {
        //cout<<a<<' '<<b<<' '<<c<<' '<<d<<' '<<e<<endl;
        if(c!=)f[a][b][c][d][e][la]+=(c-(la==))*dfs(a,b,c-,d+,e,);
        else if(la!=) f[a][b][c][d][e][la]+=dfs(a,b,c-,d+,e,);
        f[a][b][c][d][e][la]%=p;
    }
    if(d)
    {
         
        if(d!=)f[a][b][c][d][e][la]+=(d-(la==))*dfs(a,b,c,d-,e+,);
        else if(la!=)f[a][b][c][d][e][la]+=dfs(a,b,c,d-,e+,);
        f[a][b][c][d][e][la]%=p;
    }
    if(e)
    {
        if(e!=)f[a][b][c][d][e][la]+=(e-(la==))*dfs(a,b,c,d,e-,);
        else if(la!=)f[a][b][c][d][e][la]+=dfs(a,b,c,d,e-,);
        f[a][b][c][d][e][la]%=p;
    }
    return f[a][b][c][d][e][la];
}
int main()
{
    scanf("%d",&t);
    for(int i=;i<=t;i++)
    {
        scanf("%d",&a[i]);
        n+=a[i];
        js[a[i]]++;
    }
    long long ans=dfs(js[],js[],js[],js[],js[],);
    printf("%lld\n",ans);
    return ;
}

  顺便提一句,我之所以还要多开一个vi数组,是为了防止f模p之后为0的情况。

Bzoj 1079 着色方案 题解的更多相关文章

  1. [BZOJ]1079 着色方案(SCOI2008)

    相邻色块不同的着色方案,似乎这道题已经见过3个版本了. Description 有n个木块排成一行,从左到右依次编号为1~n.你有k种颜色的油漆,其中第i种颜色的油漆足够涂ci个木块.所有油漆刚好足够 ...

  2. bzoj 1079 着色方案

    题目: 有n个木块排成一行,从左到右依次编号为1~n.你有k种颜色的油漆,其 中第i 种颜色的油漆足够涂ci 个木块.所有油漆刚好足够涂满所有木块,即c1+c2+-+ck=n.相邻两个木块涂相同色显得 ...

  3. BZOJ 1079 着色方案(DP)

    如果把当前格子涂什么颜色当做转移的话,状态则是每个格子的颜色数还剩多少,以及上一步用了什么颜色,这样的状态量显然是5^15.不可取. 如果把当前格子涂颜色数还剩几个的颜色作为转移的话,状态则是每个格子 ...

  4. BZOJ 1079: [SCOI2008]着色方案 记忆化搜索

    1079: [SCOI2008]着色方案 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/p ...

  5. BZOJ 1079: [SCOI2008]着色方案(巧妙的dp)

    BZOJ 1079: [SCOI2008]着色方案(巧妙的dp) 题意:有\(n\)个木块排成一行,从左到右依次编号为\(1\)~\(n\).你有\(k\)种颜色的油漆,其中第\(i\)种颜色的油漆足 ...

  6. [BZOJ 1079][SCOI 2008]着色方案

    1079: [SCOI2008]着色方案 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2237  Solved: 1361[Submit][Stat ...

  7. bzoj 1079: [SCOI2008]着色方案 DP

    1079: [SCOI2008]着色方案 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 803  Solved: 512[Submit][Status ...

  8. 【BZOJ】1079: [SCOI2008]着色方案(dp+特殊的技巧)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1079 只能想到5^15的做法...........................果然我太弱. 其实 ...

  9. 【BZOJ 1079】[SCOI2008]着色方案

    Description 有n个木块排成一行,从左到右依次编号为1~n.你有k种颜色的油漆,其中第i种颜色的油漆足够涂ci个木块.所有油漆刚好足够涂满所有木块,即c1+c2+...+ck=n.相邻两个木 ...

随机推荐

  1. 如何在XAML中转义大括号

    原文:如何在XAML中转义大括号 如何在XAML中转义大括号                                       周银辉 我们知道大括号"{}"在XAML中 ...

  2. JS实时检测文本框内容长度

    通过js代码实时监测,文本框内容的变化以及长度,下图是一个实际使用场景. HTML部分: <input id="Text1" type="text" on ...

  3. Qt打开外部程序和文件夹需要注意的细节(注意QProcess的空格问题,以及打开本地文件时,需要QUrl::fromLocalFile才可以)

    下午写程序中遇到几个小细节,需要在这里记录一下. ? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 QProcess *process = new QProcess(this ...

  4. Win8Metro(C#)数字图像处理--2.24二值图像闭运算

    原文:Win8Metro(C#)数字图像处理--2.24二值图像闭运算  [函数名称] 二值图像闭运算函数CloseOperateProcess(WriteableBitmap src) [算法说 ...

  5. 彻底删除kafka topic步骤

    基于kafka-2.11-0.9.0.0 . a.kill掉kafka进程,然后在server.properties里面加上delete.topic.enable=true.重启kafka.集群中的每 ...

  6. Ural_1169_Pairs

    此题略坑... 思路:把N个点分成m若干个联通子图,然后用m-1个桥把这m个联通子图连接起来即可. 若每个联通子图内部都是完全图也符合题意,但答案却是Wrong Answer,只有把每个联通子图内部当 ...

  7. return view 详解 MVC

    1.return View(); 返回值 类型:System.Web.Mvc.ViewResult将视图呈现给响应的 View() 结果. 注释 View() 类的此方法重载将返回一个具有空 View ...

  8. shell日期整理

    date 当前日期+时间 # 日期格式化:date+"" - date +"%Y%m%d" 不带横杠分隔符的日期20160107 date +"%Y% ...

  9. HTML连载9-video标签的第二种格式&audio标签

    一.video第二种格式 1.背景:由于视频数据非常重要,所以五大浏览器厂商都不愿意支持别人的视频格式,所以导致了没有一种视频格式是所有浏览器都支持的.这个时候W3C为了解决这个问题,所以推出了第二种 ...

  10. 原创-使用pywinauto进行dotnet的winform程序控制(一)

    pywinauto自动化控制win32的ui的程序,网上有好多的教程.但是操作dotnet写的winform教程,就少之又少.今天我就来分享我的pywinauto操作dotnet的winform的研究 ...