假设检验是以小概率事件,在一次实验中是不可能发生为前提(事实上是有可能发生的,但不是这样说的话,就落入一个圈,不能继续玩了),来否认原假设。

u检验的定义:

已知从正态母体N(u,σ2)中抽得容量为n的子样,求得子样的均值x,而且假设母体的方差σ2  为已知值,那么可利用统计量

u = (x - μ) / (σ / √n)  ~  N(0,1)

检验母体期望μ是否与某一常数相符进行检验。

(意思是说,我们假设的μ是母体均值,n是样本数,构造了u,u服从正态分布,其均值为0,中误差为1)


正态分布,可以网上查,就是对某个测量量,均值+误差的概率情况。

(标准正态分布曲线,假设均值u等于0;如果不是标准正态分布曲线,那么u相当于向左向右偏)

例如:对一短距离,测量10000次,得到中误差±σ10000 ,已经非常接近1σ 了。

而测了100次,可能得到的中误差在±1σ到±2σ之间。

(所以有一种说法,就是如果做了大量测试,得到某个均值a,中误差σ' (因为我们永远不知道真正的σ,毕竟不能做无限次测试),假如另外再测一次,得到的值为b , 如果|b - a| > 2σ ,那么认为b是噪点,毕竟从正态分布来看,大于2σ的值概率已经小于5%了)


那么,u分布到底是怎么回事呢?

(1) 假如已知母体方差σ ,意思应该是,已知一个仪器测量的方差 。 (仪器的方差,也是通过大量测试一个量,求方差得出来的,很接近真的σ)

(2) 子样的均值x ,意思应该是,测了多次,例如:1.01,1.01,1.019,1.00,0.999,……,然后求出均值,假如为x,但是≠1

(3) 母体期望μ , 就是说我们假设的一个值。例如上面,样本均值为x≠1,但是很接近1,那么可以假设μ = 1

(为什么不干脆说,母体期望μ 直接就等于x好了,干嘛多次一举?因为任性…… 如果都这样的话,就不需要搞u检验了,u检验没意义,相当于主观的100%认定μ=x,没必要检验)


u = (x - μ) / (σ / √n)

分母(σ / √n) , 就是根据误差传播定律,得到x的精度

所以,u就是:假设值 - 样本均值 : 样本精度


那么,如何检验?

在假设检验前,还有有一个值,就是对:假设μ = 1的显著水平,一般称为a值进行评估。

如果我们坚信,母体均值μ 就是等于 1 , “坚信”这个东西,也是有值的;

“坚信”值95%,就是有5%怀疑 “μ 就是等于 1” 是错的。

a的意思是,“怀疑”程度。

如果相信假设的μ就是母体均值 , 那么a设置小一点,例如:5%(0.05)、1%(0.01)


那么,u计算好,有a,就愉快的差表了。

查表,其实就是反算u' ,和u的关系。

看上面正态分布的图:

假设a是5%,那么得到的u' = 0 + 1.96 , 那么如果  -u' < u < u' ,就说明了这个u在接受域内,假设成立。


应用:

例子一:测定高温对距离测量的影响

1.  假如在高温度T的时候,测n次距离样本,得到了样本均值x

2.  假如在常温下,大量(比n大得多)测得距离均值为μ

那么,可以做假设检验:

由于相信μ ,所以设置a = 0.001,表示对μ的怀疑度很低。

如果u超出了接受域,那么认为μ是错的;但是,实际上μ又是对的,因为在条件很好且大量测得的情况下得到的。

所以,有一个结论,就是样本均值x测得很不好,导致拒绝了母体均值为μ的假设。


例子二:测定粗差

1. 假设测了n(n很大)次距离,得到样本均值x

2. 在和1的条件相同的情况下,测得另外一个距离值,测了m(m远小于n)次,均值为μ

那么可以做假设检验:

由于不太相信μ ,设置a = 0.05,表示对μ的怀疑度高。

如果超出了接受域,那么认为μ是错的,也就是m次的均值μ仍然存在粗差


更深入:

u = (x - μ) / (σ / √n)

假设分母是vi = Bx - l,中,vi的精度 。 (可以先平差,求出x的精度,然后根据误差传播定律,得到v的精度)

由于v是观测值改正数,其数学期望当然为0,因此μ=0;

如果对一个值,观测了十分多次,那么其观测值改正数当然要为0的了,因此可以将a设小点。

然后做检验。如果在接受域内,那么证明vi是对的;否则vi是错的,有粗差

u检验粗浅理解的更多相关文章

  1. paxos算法之粗浅理解

    paxos出身 paxos出身名门,它爹是没多久前获得图灵奖的在分布式领域大名鼎鼎的LeslieLamport. paxos为何而生 那么Lamport他老人家为什么要搞这个东东呢,不是吃饱了撑的,而 ...

  2. 对js闭包的粗浅理解

    只能是粗浅的,毕竟js用法太灵活. 首先抛概念:闭包(closure)是函数对象与变量作用域链在某种形式上的关联,是一种对变量的获取机制.这样写鬼能看懂. 所以要大致搞清三个东西:函数对象(funct ...

  3. C#高级编程笔记 Delegate 的粗浅理解 2016年9月 13日

    Delegate [重中之重] 委托 定义一:(参考)http://www.cnblogs.com/zhangchenliang/archive/2012/09/19/2694430.html 完全可 ...

  4. 对Java框架spring、hibernate、Struts的粗浅理解

    对 Struts 的理解:1. struts 是一个按 MVC 模式设计的 Web 层框架,其实它就是一个大大的 servlet,这个Servlet 名为 ActionServlet,或是 Actio ...

  5. UNITY 画布的粗浅理解

    画布:当画布是screen-space overlay时,这个好理解,画布可以控制如分辨率,层次等.但当画布是 world-space时,这个严格来说就不算是一个画布了,屏幕空间或相机空间的画布是先绘 ...

  6. 关于</div>的粗浅理解

    </div>作为c#中常用的一个标签,在写多个区域的内容时有着十分重要的作用.如果写简单的网页时不用div可能感受不到太大的影响,但是在写较为复杂的程序时div的分隔作用就很明显了,改动大 ...

  7. function的粗浅理解

    <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...

  8. 关于JavaScript闭包的粗浅理解

    在JavaScript中,使用var创建变量,会创建全局变量或局部变量. 只有在非函数内创建的变量,才是全局变量,该变量可以在任何地方被读取. 而在函数内创建变量时,只有在函数内部才可读取.在函数外部 ...

  9. CQRS粗浅理解

    CQRS(命令查询责任分离)是一种奇特的模式,表示解耦系统的输入和输出. 通常情况下,输入端将数据写到数据库,输出端从数据库查询.与读写锁的场景类似,写的过程中不能读.正常情况下没有问题,但是在大规模 ...

随机推荐

  1. 记录一次redis cpu异常升高的排插思路

    好久没有写博客  现在重新捡起来  记录工作中遇到的问题  方便以后在遇到类似的问题也有一个参考. 背景:有一天生产服务器redis  cpu 频繁报警    单核cpu 所以在想是不是业务量上来了. ...

  2. SpringBoot2+Netty打造通俗简版RPC通信框架

    2019-07-19:完成基本RPC通信! 2019-07-22:优化此框架,实现单一长连接! 2019-07-24:继续优化此框架:1.增加服务提供注解(带版本号),然后利用Spring框架的在启动 ...

  3. Android NDK(二) CMake构建工具进行NDK开发

    本文目录 一Androidstudio中需要的插件 二项目配置 ①build.gardle配置 ②CMakeLists.txt ③Android和Cpp的代码 ④so文件生成 ⑤so文件的位置 一.A ...

  4. 02 Pycharm的安装

    一.初试 在官网http://www.jetbrains.com/pycharm安装最新版本的pycharm软件,版本为 2019.2.3,根据网上教程发现安装不了,现在貌似还没破解,退而安装 201 ...

  5. Windows内核编程时的习惯与注意事项

    Windows内核分析索引目录:https://www.cnblogs.com/onetrainee/p/11675224.html 一.内核编程注意细节: 在头文件中使用的是 <ntddk.h ...

  6. MySQL 5.7安装最佳实践

    MySQL 5.7安装最佳实践 1.环境准备OS: CentOS Linux release 7.4.1708 (Core) for VMwareMySQL: mysql-5.7.24-linux-g ...

  7. Spring源码分析之IOC的三种常见用法及源码实现(二)

    Spring源码分析之IOC的三种常见用法及源码实现(二) 回顾上文 我们研究的是 AnnotationConfigApplicationContext annotationConfigApplica ...

  8. 算法学习之剑指offer(十)

    一 题目描述 请实现一个函数用来判断字符串是否表示数值(包括整数和小数).例如,字符串"+100","5e2","-123","3 ...

  9. PHP 插入排序 -- 直接插入排序

    1)直接插入序 -- Straight Insertion Sort 时间复杂度 :O(n^2) 适用条件: 适合记录数不多的情况 1 <?php 2 $a = [0 =>3,4,5,1, ...

  10. [HNOI2007] 理想正方形 二维ST表

    题目描述 有一个a*b的整数组成的矩阵,现请你从中找出一个n*n的正方形区域,使得该区域所有数中的最大值和最小值的差最小. 输入输出格式 输入格式: 第一行为3个整数,分别表示a,b,n的值 第二行至 ...