好,前面我们介绍了一般二叉树、完全二叉树、满二叉树,这篇文章呢,我们要介绍的是哈夫曼树。

哈夫曼树也叫最优二叉树,与哈夫曼树相关的概念还有哈夫曼编码,这两者其实是相同的。哈夫曼编码是哈夫曼在1952年提出的。现在哈夫曼编码多应用在文本压缩方面。接下来,我们就来介绍哈夫曼树到底是个什么东西?哈夫曼编码又是什么,以及它如何应用于文本压缩。

哈夫曼树(Huffman Tree)

给定n个权值作为n个叶子结点,构造一棵二叉树,若该树的带权路径长度达到最小,称这样的二叉树为最优二叉树,也称为哈夫曼树(Huffman Tree)。哈夫曼树是带权路径长度最短的树,权值较大的结点离根较近。

首先,我们有这样一些数据:

sourceData = [('a', 8), ('b', 5), ('c', 3), ('d', 3), ('e', 8), ('f', 6), ('g', 2), ('h', 5), ('i', 9), ('j', 5), ('k', 7), ('l', 5), ('m', 10), ('n', 9)]

每一个数据项是一个元组,元组的第一项是数据内容,第二项是该数据的权重。也就是说,用于构建哈夫曼树的数据是带权重的。假设这些数据里面的字母a-n的权重是根据这些字母在y一个文本出出现的概率计算得出的,字母出现的概率越高,则该字母的权重越大。例如字母 a 的权重为 8 .

好,拿到数据我们就可以来构建哈夫曼树了。

  1. 首先,找出所有元素中权重最小的两个元素,即g(2)和c(3),
  2. 以g和c为子节点构建二叉树,则构建的二叉树的父节点的权重为 2+3 = 5.
  3. 从除g和c以外剩下的元素和新构建的权重为5的节点中选出权重最小的两个节点,
  4. 进行第 2 步操作。

以此类推,直至最后合成一个二叉树就是哈夫曼树。

我们用图例来表示一下:

好,这里我们的哈夫曼树就构建好了,节点中字母后面的数字表示该字母的权重,就是前面给定的数据。在这里我要强调的是,同样的数据创建的哈夫曼树并不是唯一的,所以只要按照规则一步一步没有出错,你的哈夫曼树就是正确的。

我们现在将访问左节点定义为0,访问右节点定义为1.则我们现在访问字母a,则它的编码为0110,访问字母n的编码为111,这个编码就是哈夫曼编码。

通过比对不同字母的哈夫曼编码,你发现了什么?

权重越大的字母对应的哈夫曼编码越短,权重越小的字母对应的哈夫曼编码则越长。也就是说文本中出现概率大的字母编码短,出现概率小的字母编码长。通过这种编码方式来表示文本中的字母,那所得整个文本的编码长度也会缩短。

这就是哈夫曼树也就是哈夫曼编码在文本压缩中的应用。

下面我们用代码来实现:

定义一个二叉树类:

class BinaryTree:
def __init__(self, data, weight):
self.data = data
self.weight = weight
self.left = None
self.right = None

获取节点列表中权重最小的两个节点:

# 定义获取列表中权重最大的两个节点的方法:
def min2(li):
result = [BinaryTree(None, float('inf')), BinaryTree(None, float('inf'))]
li2 = []
for i in range(len(li)):
if li[i].weight < result[0].weight:
if result[1].weight != float('inf'):
li2.append(result[1])
result[0], result[1] = li[i], result[0]
elif li[i].weight < result[1].weight:
if result[1].weight != float('inf'):
li2.append(result[1])
result[1] = li[i]
else:
li2.append(li[i])
return result, li2

定义生成哈夫曼树的方法:

def makeHuffman(source):
m2, data = min2(source)
print(m2[0].data, m2[1].data)
left = m2[0]
right = m2[1] sumLR = left.weight + right.weight
father = BinaryTree(None, sumLR)
father.left = left
father.right = right
if data == []:
return father
data.append(father)
return makeHuffman(data)

定义广度优先遍历方法:

# 递归方式实现广度优先遍历
def breadthFirst(gen, index=0, nextGen=[], result=[]): if type(gen) == BinaryTree:
gen = [gen]
result.append((gen[index].data, gen[index].weight))
if gen[index].left != None:
nextGen.append(gen[index].left)
if gen[index].right != None:
nextGen.append(gen[index].right) if index == len(gen)-1:
if nextGen == []:
return
else:
gen = nextGen
nextGen = []
index = 0
else:
index += 1
breadthFirst(gen, index, nextGen,result) return result

输入数据:

# 某篇文章中部分字母根据出现的概率规定权重
sourceData = [('a', 8), ('b', 5), ('c', 3), ('d', 3), ('e', 8), ('f', 6), ('g', 2), ('h', 5), ('i', 9), ('j', 5), ('k', 7), ('l', 5), ('m', 10), ('n', 9)]
sourceData = [BinaryTree(x[0], x[1]) for x in sourceData]

创建哈夫曼树并进行广度优先遍历:

huffman = makeHuffman(sourceData)
print(breadthFirst(huffman))

OK ,我们的哈夫曼树就介绍到这里了,你还有什么不懂的问题记得留言给我哦。

数据结构-哈夫曼树(python实现)的更多相关文章

  1. C#数据结构-赫夫曼树

    什么是赫夫曼树? 赫夫曼树(Huffman Tree)是指给定N个权值作为N个叶子结点,构造一棵二叉树,若该树的带权路径长度达到最小.哈夫曼树(也称为最优二叉树)是带权路径长度最短的树,权值较大的结点 ...

  2. Java数据结构和算法(四)赫夫曼树

    Java数据结构和算法(四)赫夫曼树 数据结构与算法目录(https://www.cnblogs.com/binarylei/p/10115867.html) 赫夫曼树又称为最优二叉树,赫夫曼树的一个 ...

  3. 数据结构图文解析之:哈夫曼树与哈夫曼编码详解及C++模板实现

    0. 数据结构图文解析系列 数据结构系列文章 数据结构图文解析之:数组.单链表.双链表介绍及C++模板实现 数据结构图文解析之:栈的简介及C++模板实现 数据结构图文解析之:队列详解与C++模板实现 ...

  4. 【数据结构】赫夫曼树的实现和模拟压缩(C++)

    赫夫曼(Huffman)树,由发明它的人物命名,又称最优树,是一类带权路径最短的二叉树,主要用于数据压缩传输. 赫夫曼树的构造过程相对比较简单,要理解赫夫曼数,要先了解赫夫曼编码. 对一组出现频率不同 ...

  5. Android版数据结构与算法(七):赫夫曼树

    版权声明:本文出自汪磊的博客,未经作者允许禁止转载. 近期忙着新版本的开发,此外正在回顾C语言,大部分时间没放在数据结构与算法的整理上,所以更新有点慢了,不过既然写了就肯定尽力将这部分完全整理好分享出 ...

  6. 6-9-哈夫曼树(HuffmanTree)-树和二叉树-第6章-《数据结构》课本源码-严蔚敏吴伟民版

    课本源码部分 第6章  树和二叉树 - 哈夫曼树(HuffmanTree) ——<数据结构>-严蔚敏.吴伟民版        源码使用说明  链接☛☛☛ <数据结构-C语言版> ...

  7. 20172332 2017-2018-2 《程序设计与数据结构》Java哈夫曼编码实验--哈夫曼树的建立,编码与解码

    20172332 2017-2018-2 <程序设计与数据结构>Java哈夫曼编码实验--哈夫曼树的建立,编码与解码 哈夫曼树 1.路径和路径长度 在一棵树中,从一个结点往下可以达到的孩子 ...

  8. hdu 2527:Safe Or Unsafe(数据结构,哈夫曼树,求WPL)

    Safe Or Unsafe Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)To ...

  9. 数据结构之C语言实现哈夫曼树

    1.基本概念 a.路径和路径长度 若在一棵树中存在着一个结点序列 k1,k2,……,kj, 使得 ki是ki+1 的双亲(1<=i<j),则称此结点序列是从 k1 到 kj 的路径. 从 ...

随机推荐

  1. BuildWinRTL.dproj 用这个重新编译就行

    BuildWinRTL.dproj 用这个重新编译就行 我每次安装新版本,都删掉了这两个函数 {$IFDEF DEBUG}exports  dbkFCallWrapperAddr,{$IF defin ...

  2. 关于qtcreator+vs2008+CDB调试太卡的问题研究(载入符号表,以及VS调试器的注册表信息)

    在刚接触Qt时,对于较大的项目,用qtcreator + vs + cdb 调试时,启动很慢并且单步运行时也经常会出现卡住半分钟以上的情况,一直没有解决.在需要debug的时候大多会在vs2008上安 ...

  3. Qt浅谈之二:钟表(时分秒针)

    一.简介 QT编写的模拟时钟,demo里的时钟只有时针和分针,在其基础上添加了秒针,构成了一个完整的时钟.能对2D绘图中坐标系统.平移变换(translate).比例变换(scale).旋转变换(ro ...

  4. Google C++测试框架系列入门篇:第三章 基本概念

    上一篇:Google C++测试框架系列入门篇:第二章 开始一个新项目 原始链接:Basic Concepts 词汇表 版本号:v_0.1 基本概念 使用GTest你肯定会接触到断言这个概念.断言是用 ...

  5. vue.js异步上传文件前后端代码

    上传文件前端代码如下: <!DOCTYPE html> <html> <head> <meta http-equiv="Content-Type&q ...

  6. Hive学习之路(一)—— Hive 简介及核心概念

    一.简介 Hive是一个构建在Hadoop之上的数据仓库,它可以将结构化的数据文件映射成表,并提供类SQL查询功能,用于查询的SQL语句会被转化为MapReduce作业,然后提交到Hadoop上运行. ...

  7. EhCache注解 (转载)

    其实EhCache使用的就是Spring Cache的注解. 1.1 @Cacheable @Cacheable可以标记在一个方法上,也可以标记在一个类上.当标记在一个方法上时表示该方法是支持缓存的, ...

  8. Python:字典的高级知识

    一.字典 是另一种可变容器模型,且可存储任意类型对象.字典的每个键值(key=>value)对用冒号(:)分割,每个对之间用逗号(,)分割,整个字典包括在花括号({})中. 二.一些字典高级知识 ...

  9. 解决Spring的java项目打包后执行出现“无法读取方案文档...“、“原因为 1) 无法找到文档; 2) 无法读取文档; 3) 文档的根元素不是...”问题

    问题 一个用Spring建的java项目,在Eclipse或idea中运行正常,为什么打包后运行出现如下错误呢? 2019/07/10/19:04:07 WARN [main] org.springf ...

  10. spark入门(三)键值对操作

    1 简述 Spark为包含键值对类型的RDD提供了一些专有的操作.这些RDD被称为PairRDD. 2 创建PairRDD 2.1 在sprk中,很多存储键值对的数据在读取时直接返回由其键值对数据组成 ...