Hive 桶

对于每一个表(table)或者分区, Hive可以进一步组织成桶,也就是说桶是更为细粒度的数据范围划分。Hive也是 针对某一列进行桶的组织。Hive采用对列值哈希,然后除以桶的个数求余的方式决定该条记录存放在哪个桶当中。

把表(或者分区)组织成桶(Bucket)有两个理由:

(1)获得更高的查询处理效率。桶为表加上了额外的结构,Hive 在处理有些查询时能利用这个结构。具体而言,连接两个在(包含连接列的)相同列上划分了桶的表,可以使用 Map 端连接 (Map-side join)高效的实现。比如JOIN操作。对于JOIN操作两个表有一个相同的列,如果对这两个表都进行了桶操作。那么将保存相同列值的桶进行JOIN操作就可以,可以大大较少JOIN的数据量。

(2)使取样(sampling)更高效。在处理大规模数据集时,在开发和修改查询的阶段,如果能在数据集的一小部分数据上试运行查询,会带来很多方便。

1. 创建带桶的 table :

create table bucketed_user(id int,name string) clustered by (id) sorted by(name) into 4 buckets row format delimited fields terminated by '\t' stored as textfile; 
首先,我们来看如何告诉Hive—个表应该被划分成桶。我们使用CLUSTERED BY 子句来指定划分桶所用的列和要划分的桶的个数: 

CREATE TABLE bucketed_user (id INT) name STRING) 
CLUSTERED BY (id) INTO 4 BUCKETS; 

在这里,我们使用用户ID来确定如何划分桶(Hive使用对值进行哈希并将结果除 以桶的个数取余数。这样,任何一桶里都会有一个随机的用户集合(PS:其实也能说是随机,不是吗?)。 

对于map端连接的情况,两个表以相同方式划分桶。处理左边表内某个桶的 mapper知道右边表内相匹配的行在对应的桶内。因此,mapper只需要获取那个桶 (这只是右边表内存储数据的一小部分)即可进行连接。这一优化方法并不一定要求 两个表必须桶的个数相同,两个表的桶个数是倍数关系也可以。用HiveQL对两个划分了桶的表进行连接,可参见“map连接”部分(P400)。 

桶中的数据可以根据一个或多个列另外进行排序。由于这样对每个桶的连接变成了高效的归并排序(merge-sort), 因此可以进一步提升map端连接的效率。以下语法声明一个表使其使用排序桶: 

CREATE TABLE bucketed_users (id INT, name STRING) 
CLUSTERED BY (id) SORTED BY (id ASC) INTO 4 BUCKETS; 

我们如何保证表中的数据都划分成桶了呢?把在Hive外生成的数据加载到划分成 桶的表中,当然是可以的。其实让Hive来划分桶更容易。这一操作通常针对已有的表。 

Hive并不检查数据文件中的桶是否和表定义中的桶一致(无论是对于桶 的数量或用于划分桶的列)。如果两者不匹配,在査询时可能会碰到错 误或未定义的结果。因此,建议让Hive来进行划分桶的操作。 

有一个没有划分桶的用户表: 
hive> SELECT * FROM users; 
0    Nat 
2    Doe 
B    Kay 
4    Ann 

2. 强制多个 reduce 进行输出:

要向分桶表中填充成员,需要将 hive.enforce.bucketing 属性设置为 true。①这 样,Hive 就知道用表定义中声明的数量来创建桶。然后使用 INSERT 命令即可。需要注意的是: clustered by和sorted by不会影响数据的导入,这意味着,用户必须自己负责数据如何如何导入,包括数据的分桶和排序。 
'set hive.enforce.bucketing = true' 可以自动控制上一轮reduce的数量从而适配bucket的个数,当然,用户也可以自主设置mapred.reduce.tasks去适配bucket个数,推荐使用'set hive.enforce.bucketing = true'  

3. 往表中插入数据:

INSERT OVERWRITE TABLE bucketed_users SELECT * FROM users; 

物理上,每个桶就是表(或分区)目录里的一个文件。它的文件名并不重要,但是桶 n 是按照字典序排列的第 n 个文件。事实上,桶对应于 MapReduce 的输出文件分区:一个作业产生的桶(输出文件)和reduce任务个数相同。我们可以通过查看刚才 创建的bucketd_users表的布局来了解这一情况。运行如下命令:  

4. 查看表的结构:

hive> dfs -ls /user/hive/warehouse/bucketed_users; 
将显示有4个新建的文件。文件名如下(文件名包含时间戳,由Hive产生,因此 每次运行都会改变): 
attempt_201005221636_0016_r_000000_0 
attempt_201005221636_0016_r-000001_0 
attempt_201005221636_0016_r_000002_0 
attempt_201005221636_0016_r_000003_0 
第一个桶里包括用户IDO和4,因为一个INT的哈希值就是这个整数本身,在这里 除以桶数(4)以后的余数:② 

5. 读取数据,看每一个文件的数据:

hive> dfs -cat /user/hive/warehouse/bucketed_users/*0_0; 
0 Nat 
4 Ann 

用TABLESAMPLE子句对表进行取样,我们可以获得相同的结果。这个子句会将 查询限定在表的一部分桶内,而不是使用整个表:

6. 对桶中的数据进行采样:

hive> SELECT * FROM bucketed_users 
>    TABLESAMPLE(BUCKET 1 OUT OF 4 ON id); 
0 Nat 
4 Ann 

桶的个数从1开始计数。因此,前面的查询从4个桶的第一个中获取所有的用户。 对于一个大规模的、均匀分布的数据集,这会返回表中约四分之一的数据行。我们 也可以用其他比例对若干个桶进行取样(因为取样并不是一个精确的操作,因此这个 比例不一定要是桶数的整数倍)。例如,下面的查询返回一半的桶:

7. 查询一半返回的桶数:

hive> SELECT * FROM bucketed_users 
>    TABLESAMPLE(BUCKET 1 OUT OF 2 ON id); 
0 Nat 
4 Ann 
2 Joe 

因为查询只需要读取和TABLESAMPLE子句匹配的桶,所以取样分桶表是非常高效 的操作。如果使用rand()函数对没有划分成桶的表进行取样,即使只需要读取很 小一部分样本,也要扫描整个输入数据集: 

hive〉 SELECT * FROM users 
> TABLESAMPLE(BUCKET 1 OUT OF 4 ON rand()); 
2 Doe 

①从Hive 0.6.0开始,对以前的版本,必须把mapred.reduce .tasks设为表中要填 充的桶的个数。如果桶是排序的,还需要把hive.enforce.sorting设为true。 
②显式原始文件时,因为分隔字符是一个不能打印的控制字符,因此字段都挤在一起。 

3、举个完整的小例子:

(1)建student & student1 表:

1 create table student(id INT, age INTname STRING)
2 partitioned by(stat_date STRING)
3 clustered by(id) sorted by(age) into 2 buckets
4 row format delimited fields terminated by ',';
5  
6 create table student1(id INT, age INTname STRING)
7 partitioned by(stat_date STRING)
8 clustered by(id) sorted by(age) into 2 buckets
9 row format delimited fields terminated by ',';

(2)设置环境变量:

set hive.enforce.bucketing = true;  

(3)插入数据:

01 cat bucket.txt
02  
03 1,20,zxm
04 2,21,ljz
05 3,19,cds
06 4,18,mac
07 5,22,android
08 6,23,symbian
09 7,25,wp
10  
11 LOAD DATA local INPATH '/home/lijun/bucket.txt' OVERWRITE INTO TABLE student partition(stat_date="20120802");
12  
13 from student
14 insert overwrite table student1 partition(stat_date="20120802")
15 select id,age,name where stat_date="20120802" sort by age;

(4)查看文件目录:

hadoop fs -ls /hive/warehouse/test.db/student1/stat_date=20120802 
Found 2 items 
-rw-r--r--   2 lijun supergroup         31 2013-11-24 19:16 /hive/warehouse/test.db/student1/stat_date=20120802/000000_0 
-rw-r--r--   2 lijun supergroup         39 2013-11-24 19:16 /hive/warehouse/test.db/student1/stat_date=20120802/000001_0 

(5)查看sampling数据:

hive> select * from student1 tablesample(bucket 1 out of 2 on id);

Total MapReduce jobs = 1
Launching Job 1 out of 1
.......
OK
4       18      mac     20120802
2       21      ljz     20120802
6       23      symbian 20120802
Time taken: 20.608 seconds

注:tablesample是抽样语句,语法:TABLESAMPLE(BUCKET x OUT OF y)
y必须是table总bucket数的倍数或者因子。hive根据y的大小,决定抽样的比例。例如,table总共分了64份,当y=32时,抽取(64/32=)2个bucket的数据,当y=128时,抽取(64/128=)1/2个bucket的数据。x表示从哪个bucket开始抽取。例如,table总bucket数为32,tablesample(bucket 3 out of 16),表示总共抽取(32/16=)2个bucket的数据,分别为第3个bucket和第(3+16=)19个bucket的数据。

Hive bucket表的更多相关文章

  1. hive内部表、外部表

    hive内部表.外部表区别自不用说,可实际用的时候还是要小心. Hive的数据分为表数据和元数据,表数据是Hive中表格(table)具有的数据:而元数据是用来存储表的名字,表的列和分区及其属性,表的 ...

  2. hive桶表好处

    对于每一个表(table)或者分区, Hive可以进一步组织成桶,也就是说桶是更为细粒度的数据范围划分.Hive也是针对某一列进行桶的组织.Hive采用对列值哈希,然后除以桶的个数求余的方式决定该条记 ...

  3. Hive与表操作有关的语句

    Hive与表操作有关的语句 1.创建表的语句: Create [EXTERNAL] TABLE [IF NOT EXISTS] table_name [(col_name data_type [COM ...

  4. 【转】Hive内部表、外部表

    hive内部表.外部表区别自不用说,可实际用的时候还是要小心. 1. 内部表: create table tt (name string , age string) location '/input/ ...

  5. Hive内表和外表的区别

    本文以例子的形式介绍一下Hive内表和外表的区别.例子共有4个:不带分区的内表.带分区的内表.不带分区的外表.带分区的外表. 1 不带分区的内表 #创建表 create table innerTabl ...

  6. hive内部表与外部表区别

    1.在Hive里面创建一个表: hive> create table wyp(id int,    > name string,    > age int,    > tele ...

  7. Hive学习之三 《Hive的表的详解和应用案例详解》

    一.Hive的表 Hive的表分为内部表.外部表和分区表. 1.内部表,为托管表. 2.外部表,external. 3.分区表. 详解: 内部表,删除表的时候,数据会跟着删除. 外部表,在删除表的时候 ...

  8. hive 创建表和导入数据实例

    //创建数据库create datebase hive;//创建表create table t_emp(id int,name string,age int,dept_name string,like ...

  9. S3c2440A WINCE平台HIVE注册表+binfs的实现

    今天最大的收获莫过于把binfs和hive注册表同时在三星的平台上实现了,这可是前无古人啊(只是看到好多哥们说找不到三星的HIVE资料),哈哈哈.怕今天的成果日后成炮灰,还是写下来比较好,要养成这样的 ...

随机推荐

  1. C# 基于NPOI+Office COM组件 实现20行代码在线预览文档(word,excel,pdf,txt,png)

    由于项目需要,需要一个在线预览office的功能,小编一开始使用的是微软提供的方法,简单快捷,但是不符合小编开发需求, 就另外用了:将文件转换成html文件然后预览html文件的方法.对微软提供的方法 ...

  2. SSH原理讲解与实践

    一.简介 SSH全名Secure Socket Shell,安全外壳传输协议.专为远程登录会话和其他网络服务提供安全性的协议 二.加密算法 要了解SSH的原理,就要先知道目前主流的俩种加密算法 2.1 ...

  3. Spring源码剖析6:Spring AOP概述

    原文出处: 五月的仓颉 我们为什么要使用 AOP 前言 一年半前写了一篇文章Spring3:AOP,是当时学习如何使用Spring AOP的时候写的,比较基础.这篇文章最后的推荐以及回复认为我写的对大 ...

  4. pycharm编辑器简单配置-- 持续更新完善

    目录 python解释器安装.多版本共存等 给pycharm编辑器选择python解释器版本 配置pip仓库地址 方式一:直接修改文件配置 方式二:pycharm配置 方式三:通过临时指定pip仓库地 ...

  5. 版本管理·玩转git(快速入门git)

    如果你用过Word文档写过文章,那么你一定会有这样的经历. 我觉得某一段或者某一句写得不够好,但是,删掉之后我可能会后悔把它删掉了,进而又想把删掉的段落找回来,这时,你想到了一个好办法,将每次的修改都 ...

  6. Python数据分析之numpy数组全解析

    1 什么是numpy numpy是一个在Python中做科学计算的基础库,重在数值计算,也是大部分Python科学计算库的基础库,多用于大型.多维数据上执行数值计算. 在NumPy 中,最重要的对象是 ...

  7. python相关性算法解决方案(rest/数据库/json/下载)

    1. 场景描述 一直做java,因项目原因,需要封装一些经典的算法到平台上去,就一边学习python,一边网上寻找经典算法代码,今天介绍下经典的相关性算法,算法原理就不介绍了,只从代码层面进行介绍,包 ...

  8. 持续集成高级篇之Jekins参数化构建(二)

    系列目录 上一节我们讲解了如何使用bat脚本或者powershell脚本自身的机制来达到参数化构建的目的,这在一定程序上增加了灵活性,然而缺点也相当明显:它只能适应一些相对比较固定的参数传入(比如像上 ...

  9. Synchronized机制下偏向锁、轻量级锁、重量级锁的适用场景

    上次总结了Synchronized机制下的锁的种类和原理,这次总结一下几种锁的适用场景. 偏向锁 一个线程获取某个对象的偏向锁的成本是很低的,只需把对象头的偏向线程id改为自己就好,如果偏向线程id已 ...

  10. Spring 核心技术(7)

    接上篇:Spring 核心技术(6) version 5.1.8.RELEASE 1.6 定制 Bean 的特性 Spring Framework 提供了许多可用于自定义 bean 特性的接口.本节将 ...