Matlab 模拟退火算法模型代码

function [best_solution,best_fit,iter] = mySa(solution,a,t0,tf,Markov)
% 模拟退化算法
% ===== 输入 ======%
% solution 初始解
% a 温度衰减系数 0.99
% t0 初始温度 120
% tf 最终温度 1
% Markov 马尔科夫链长度 10000
% ====== 输出 =====%
% best_solution 最优解
% best_fit 最优解目标值
% iter 迭代次数
n = length(solution);
t = t0;
solution_new = solution; % 初始解赋给最新的解
best_fit = Inf; % 初始化最优适应度(最差的适应度)
fit = Inf; % 初始化当前的适应度
best_solution = solution; % 最优解
iter = 1;
% -----------------------迭代过程------------------------------------%
while t >= tf
for j = 1:Markov
% -----------------------产生新解过程------------------------------------%
%进行扰动,产生新的序列solution_new;
if (rand < 0.7) % 概率小于0.7 采取交换两个数位置的方式产生新解
ind1 = 0; ind2 = 0;
while(ind1 == ind2 && ind1 >= ind2)
ind1 = ceil(rand*n);
ind2 = ceil(rand*n);
end
temp = solution_new(ind1);
solution_new(ind1) = solution_new(ind2);
solution_new(ind2) = temp;
else % 概率大于等于0.7 采取成组交换连续三个数位置的方式产生新解
ind = zeros(3,1);
L_ind = length(unique(ind));
while (L_ind < 3)
ind = ceil([rand*n rand*n rand*n]);
L_ind = length(unique(ind));
end
ind0 = sort(ind);
a1 = ind0(1); b1 = ind0(2); c1 = ind0(3);
solution0 = solution_new;
solution0(a1:a1+c1-b1-1) = solution_new(b1+1:c1);
solution0(a1+c1-b1:c1) = solution_new(a1:b1);
solution_new = solution0;
end
% -----------------------计算适应度过程------------------------------------ %
%计算适应度fit_new
fit_new = myFitCal(solution_new);
% -----------------------解的更新过程------------------------------------ %
if fit_new<fit
fit = fit_new;
solution = solution_new;
%对最优路线和距离更新
if fit_new < best_fit
iter = iter + 1;
best_fit = fit_new;
best_solution = solution_new;
end
else
if rand<exp(-(fit_new-fit)/t)
solution = solution_new;
fit = fit_new;
end
end
solution_new = solution;
end
t = t*a; %降温
end
Matlab 模拟退火算法模型代码的更多相关文章
- Matlab 非线性规划问题模型代码
非线性规划问题的基本内容 非线性规划解决的是自变量在一定的非线性约束或线性约束组合条件下,使得非线性目标函数求得最大值或者最小值的问题. 当目标函数为最小值时,上述问题可以写成如下形式: \[ \mi ...
- Matlab 线性规划问题模型代码
线性规划问题的基本内容 线性规划解决的是自变量在一定的线性约束条件下,使得线性目标函数求得最大值或者最小值的问题. \[ \min z=\sum_{j=1}^{n} f_{j} x_{j} \] \[ ...
- Matlab 图论最短路问题模型代码
最短路问题的基本内容 最短路问题研究的是,在一个点与点之间连接形成的网络图中,对应路径赋予一定的权重(可以理解为两点之间的距离),计算任意两点之间如何和走,路径最短的问题.在这里的距离可以理解成各种两 ...
- Matlab随笔之模拟退火算法
问题描述: 我方有一个基地,经度和纬度为( 70,40).假设我方飞机的速度为 1000 公里/小时. 我方派一架飞机从基地出发,侦察完敌方所有目标,再返回原来的基地.在敌方每一目 标点的侦察时间不计 ...
- 模拟退火算法SA原理及python、java、php、c++语言代码实现TSP旅行商问题,智能优化算法,随机寻优算法,全局最短路径
模拟退火算法SA原理及python.java.php.c++语言代码实现TSP旅行商问题,智能优化算法,随机寻优算法,全局最短路径 模拟退火算法(Simulated Annealing,SA)最早的思 ...
- Matlab 整数线性规划问题模型代码
整数线性规划问题的基本内容 整数线性规划解决的是自变量在一定的线性约束条件下,使得线性目标函数求得最大值或者最小值的问题.其中自变量只能取整数.特别地,当自变量只能取0或者1时,称之为 0-1 整数规 ...
- [原创] Matlab 指派问题模型代码
指派问题的基本内容 一般来说指派问题解决的是如何将任务分配到人,使得任务完成的效益最大化(成本型效益则求最小值,利润型效益则求最大值).上述问题一个 0 - 1 整数规划问题. 问题围绕着任务和人展开 ...
- 模拟退火算法(SA)求解TSP 问题(C语言实现)
这篇文章是之前写的智能算法(遗传算法(GA).粒子群算法(PSO))的补充.其实代码我老早之前就写完了,今天恰好重新翻到了,就拿出来给大家分享一下,也当是回顾与总结了. 首先介绍一下模拟退火算法(SA ...
- Python实现各种排序算法的代码示例总结
Python实现各种排序算法的代码示例总结 作者:Donald Knuth 字体:[增加 减小] 类型:转载 时间:2015-12-11我要评论 这篇文章主要介绍了Python实现各种排序算法的代码示 ...
随机推荐
- BeautifulSoup 库简单学习使用
from bs4 import BeautifulSoup as BS # 首先是初始化一个BeautifulSoup的对象 soup = BS(text,'lxml') 示例: from bs4 i ...
- c排序
#pragma once//如果写头文件 放置头文件重复包含 #include<stdio.h> //定义类型 结构体类型定义 //宏定义 #define //函数申明 void prin ...
- JavaScript最常见的错误种类
1.报错为: Uncaught ReferenceError:未捕获引用错误(引用错误:使用了没有定义的变量) 错误之前的代码会执行,之后代码不会执行 2.报错为: Uncaught Syntaxer ...
- 关于window.location.href 传中文参数 乱码问题
传中文查询乱码问题 则需要对要传的参数进行二次编码 例如 window.location.href ="/xx.jsp?name="+name+""; 这样子 ...
- 【转】Python实现智能五子棋
前言 棋需要一步一步下,人生需要一步一步走.千里之行,始于足下,九层之台,起于累土. 用Python五子棋小游戏. 基本环境配置 版本:Python3 相关模块: 本文所做工作如下: (1) 五子棋界 ...
- Java生成二维码(Java程序都可以使用)
工具类,链接:https://pan.baidu.com/s/18U399fTH5wBJPnL97pAekg 提取码:bmw7 注:里面的corejar包是使用的zxing的代码,我只是将其导出的ja ...
- Delphi - cxGrid颜色显示相关设置
1:单元格的值满足某个条件时,该单元格所在整行颜色设置整行字体设置 选中cxGridDBTableView,单击F11调出属性配置面板,在Events中双击OnCustomDrawCell后双击编辑重 ...
- Android自动化测试探索(五)代码覆盖率统计
Android 代码覆盖率统计 本周开始准备统计Android自动化用例的代码覆盖率,将最终使用的方法记录下来. 覆盖率监测的原理 覆盖率监测的原理跟iOS上的原理差不多,大致的思路参考下吧, iOS ...
- 定时器Timer的运用
1.Timer调度任务的方法
- Python编程习惯