杭电多校第九场 HDU6415 Rikka with Nash Equilibrium dp
Rikka with Nash Equilibrium
Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 524288/524288 K (Java/Others)
Total Submission(s): 1251 Accepted Submission(s): 506
Rikka and Yuta are playing a simple matrix game. At the beginning of the game, Rikka shows an n×m integer matrix A. And then Yuta needs to choose an integer in [1,n], Rikka needs to choose an integer in [1,m]. Let i be Yuta's number and j be Rikka's number, the final score of the game is Ai,j.
In the remaining part of this statement, we use (i,j) to denote the strategy of Yuta and Rikka.
For example, when n=m=3 and matrix A is
If the strategy is (1,2), the score will be 2; if the strategy is (2,2), the score will be 4.
A pure strategy Nash equilibrium of this game is a strategy (x,y) which satisfies neither Rikka nor Yuta can make the score higher by changing his(her) strategy unilaterally. Formally, (x,y) is a Nash equilibrium if and only if:
In the previous example, there are two pure strategy Nash equilibriums: (3,1) and (2,2).
To make the game more interesting, Rikka wants to construct a matrix A for this game which satisfies the following conditions:
1. Each integer in [1,nm] occurs exactly once in A.
2. The game has at most one pure strategy Nash equilibriums.
Now, Rikka wants you to count the number of matrixes with size n×m which satisfy the conditions.
The first line of each testcase contains three numbers n,m and K(1≤n,m≤80,1≤K≤109).
The input guarantees that there are at most 3 testcases with max(n,m)>50.
3 3 100
5 5 2333
1170
在一个矩阵中,如果某一个数字是该行该列的最大值,则这个数满足纳什均衡。
要求构造一个n*m的矩阵,里面填的数字各不相同且范围是【1,m*n】,且矩阵内最多有一个数满足纳什平衡,问有多少种构造方案。
分析:
从大到小往矩阵里填数,则填的数会多占领一行或者多占领一列或者不占领(上方左方都有比他更大的数)
多占领一行,则这一行可任意填的位置是是这一行还没填的列
多占领一列,同理
特殊考虑:有更大的数还没填进去的情况
参考博客:
https://blog.csdn.net/monochrome00/article/details/81875980
AC代码:
#include <map>
#include <set>
#include <stack>
#include <cmath>
#include <queue>
#include <cstdio>
#include <vector>
#include <string>
#include <bitset>
#include <cstring>
#include <iomanip>
#include <iostream>
#include <algorithm>
#define ls (r<<1)
#define rs (r<<1|1)
#define debug(a) cout << #a << " " << a << endl
using namespace std;
typedef long long ll;
const ll maxn = 1e6+10;
//const ll mod = 998244353;
const double pi = acos(-1.0);
const double eps = 1e-8;
ll n, m, mod, dp[85][85][85*85];
int main() {
ios::sync_with_stdio(0);
ll t;
cin >> t;
while( t -- ) {
cin >> n >> m >> mod;
dp[n][m][n*m] = 1; //占领了n-n+1行m-m+1列,放入了n*m-n*m+1个数字
for( ll k = n*m-1; k >= 1; k -- ) {
for( ll i = n; i >= 1; i -- ) { //从最后一行一列开始放最大的数字
for( ll j = m; j >= 1; j -- ) {
if( i*j < k ) {
break;
}
dp[i][j][k] = j*(n-i)%mod*dp[i+1][j][k+1]%mod; //多占领了一行,这一行还没放的位置可以随意放
dp[i][j][k] = (dp[i][j][k]+i*(m-j)%mod*dp[i][j+1][k+1]%mod)%mod; //多占领了一列,同上
dp[i][j][k] = (dp[i][j][k]+(i*j-k)%mod*dp[i][j][k+1]%mod)%mod; //还有更大的数没有放进去的情况
}
}
}
cout << n*m%mod*dp[1][1][1]%mod << endl;
}
return 0;
}
杭电多校第九场 HDU6415 Rikka with Nash Equilibrium dp的更多相关文章
- 杭电多校第九场 hdu6425 Rikka with Badminton 组合数学 思维
Rikka with Badminton Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 524288/524288 K (Java/O ...
- 杭电多校第九场 hdu6424 Rikka with Time Complexity 数学
Rikka with Time Complexity Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 524288/524288 K ( ...
- 杭电多校第九场 D Rikka with Stone-Paper-Scissors 数学
Rikka with Stone-Paper-Scissors Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 524288/52428 ...
- 2018 Multi-University Training Contest 9 杭电多校第九场 (有坑待补)
咕咕咕了太久 多校博客直接从第三场跳到了第九场orz 见谅见谅(会补的!) 明明最后看下来是dp场 但是硬生生被我们做成了组合数专场…… 听说jls把我们用组合数做的题都用dp来了遍 这里只放了用组 ...
- hdu6415 Rikka with Nash Equilibrium (DP)
题目链接 Problem Description Nash Equilibrium is an important concept in game theory. Rikka and Yuta are ...
- Rikka with Game[技巧]----2019 杭电多校第九场:1005
Rikka with Game Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 524288/524288 K (Java/Othe ...
- Rikka with Travels(2019年杭电多校第九场07题+HDU6686+树形dp)
目录 题目链接 题意 思路 代码 题目链接 传送门 题意 定义\(L(a,b)\)为结点\(a\)到结点\(b\)的路径上的结点数,问有种\(pair(L(a,b),L(c,d))\)取值,其中结点\ ...
- 2019杭电多校第⑨场B Rikka with Cake (主席树,离散化)
题意: 给定一块n*m的矩形区域,在区域内有若干点,每个顶点发出一条射线,有上下左右四个方向,问矩形被分成了几个区域? 思路: 稍加观察和枚举可以发现,区域数量=射线交点数+1(可以用欧拉定理验证,但 ...
- [2019杭电多校第一场][hdu6583]Typewriter(后缀自动机&&dp)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6583 大致题意是说可以花费p在字符串后添加一个任意字符,或者花费q在字符串后添加一个当前字符串的子串. ...
随机推荐
- 【Mac】nsurlsessiond 后台下载问题的解决方法
最近在使用 Mac 系统的时候,经常发现 nsurlsessiond 这个进程,一直在后台下载,非常占用网速.解决方案如下: 通过终端执行下面的语句可以停止后台的自动更新: #!/bin/sh lau ...
- Docker Toolbox安装
公司最近搭建docker环境,其中会遇到一些问题,在这里记录一下. 先来了解一下docker 一.基本概念 1.Docker中基本概念镜像(Image) 提到镜像,有对操作系统有一定认知的都知道,镜像 ...
- oracle的本地远程连接和配置
Oracle数据库的远程连接可以通过多种方式来实现,本文我们主要介绍四种远程连接的方法和注意事项,并通过示例来说明,接下来我们就开始介绍. 第一种情况: 若oracle服务器装在本机上,那就不多说了, ...
- go杂货铺
json序列化 内存中变成可存储或传输的过程称之为序列化(dict,split,struct转string) package main import ( "encoding/json&quo ...
- POI导入excel
前言 在做后台管理的时候经常会用到excel导入的问题,就是将excel中的内容批量导入到数据库中,正好在新项目中我也做了excel导入的功能,来分享给大家,也给自己做个记录. 核心思想 excel导 ...
- Qt Socket 收发图片——图像拆包、组包、粘包处理
之前给大家分享了一个使用python发图片数据.Qt server接收图片的Demo.之前的Demo用于传输小字节的图片是可以的,但如果是传输大的图片,使用socket无法一次完成发送该怎么办呢?本次 ...
- RocketMQ中Broker的刷盘源码分析
上一篇博客的最后简单提了下CommitLog的刷盘 [RocketMQ中Broker的消息存储源码分析] (这篇博客和上一篇有很大的联系) Broker的CommitLog刷盘会启动一个线程,不停地 ...
- cogs 1254. 最难的任务 Dijkstra + 重边处理
1254. 最难的任务 ★ 输入文件:hardest.in 输出文件:hardest.out 简单对比时间限制:1 s 内存限制:128 MB [题目描述] 这个真的很难.算出 123 ...
- [转载]windows下mongodb安装与使用整理
windows下mongodb安装与使用整理 一.首先安装mongodb 1.下载地址:http://www.mongodb.org/downloads 2.解压缩到自己想要安装的目录,比如d:\mo ...
- exe4j打包--jar打包exe
本文重点介绍如何将我们写的java代码打包成在电脑上可以运行的exe文件.这里只介绍直接打包成exe的方法,至于打包成exe安装包下节介绍 test 软件准备 exe4j集合包下载地址(下节内容也在这 ...