我已经根据resize_image()函数的解析对原图像与resize图像进行了解析,

若有读者想对原图像与目标图像不同尺寸验证,可根据以下代码,调整函数参数,

其细节如下:

import cv2 as cv
import numpy as np
img=cv.imread('D:\\MASKRCNN\\mask-rcnn-me\\MASKRCNN_myself\\0.bmp')
def resize_image(image, min_dim=230, max_dim=220, min_scale=2, mode="square"):
"""Resizes an image keeping the aspect ratio unchanged. min_dim: if provided, resizes the image such that it's smaller dimension == min_dim
max_dim: if provided, ensures that the image longest side doesn't exceed this value.
min_scale: if provided, ensure that the image is scaled up by at least
this percent even if min_dim doesn't require it.
mode: Resizing mode.
none: No resizing. Return the image unchanged.
square: Resize and pad with zeros to get a square image of size [max_dim, max_dim].
pad64: Pads width and height with zeros to make them multiples of 64.
If min_dim or min_scale are provided, it scales the image up
before padding. max_dim is ignored in this mode.
The multiple of 64 is needed to ensure smooth scaling of feature
maps up and down the 6 levels of the FPN pyramid (2**6=64).
crop: Picks random crops from the image. First, scales the image based
on min_dim and min_scale, then picks a random crop of
size min_dim x min_dim. Can be used in training only.
max_dim is not used in this mode. Returns:
image: the resized image
window: (y1, x1, y2, x2). If max_dim is provided, padding might
be inserted in the returned image. If so, this window is the
coordinates of the image part of the full image (excluding
the padding). The x2, y2 pixels are not included.
scale: The scale factor used to resize the image
padding: Padding added to the image [(top, bottom), (left, right), (0, 0)]
"""
# Keep track of image dtype and return results in the same dtype
image_dtype = image.dtype
print('original_image_shape=',image.shape)
# Default window (y1, x1, y2, x2) and default scale == 1.
h, w = image.shape[:2]
window = (0, 0, h, w)
scale = 1
padding = [(0, 0), (0, 0), (0, 0)]
crop = None if mode == "none":
return image, window, scale, padding, crop # Scale?
if min_dim:
# Scale up but not down
scale = max(1, min_dim / min(h, w)) # h, w是原始图片的高与宽
if min_scale and scale < min_scale: # min_scale是最小填充倍数的,至少要大于它
scale = min_scale # Does it exceed max dim?
if max_dim and mode == "square":
image_max = max(h, w)
if round(image_max * scale) > max_dim: # 最终原图片最大边扩充不能超过最大max_dim维度,否则重新选择scale
scale = max_dim / image_max # Resize image using bilinear interpolation
print('scale=',scale)
if scale != 1:
image = cv.resize(image, (round(h * scale), round(w * scale)))
print('resize_image=',image.shape)
# 上一行代码对图像做了resize,那么会改变图像的尺寸,这是我不愿意看到的,我觉的这样会对缺陷特征有损失,
# 或者出现变异,因此小心这里的变化
# Need padding or cropping?
if mode == "square":
# Get new height and width
h, w = image.shape[:2] # 此时已经将原图按照scale进行了改变
top_pad = (max_dim - h) // 2
bottom_pad = max_dim - h - top_pad
left_pad = (max_dim - w) // 2
right_pad = max_dim - w - left_pad
padding = [(top_pad, bottom_pad), (left_pad, right_pad), (0, 0)]
print('padding=',padding)
print('before_pad.shape=',image.shape)
image = np.pad(image, padding, mode='constant', constant_values=0) # 将改变的图片进行了填充
print('after_pad.shape=', image.shape) window = (top_pad, left_pad, h + top_pad, w + left_pad) # 保存经过resize后图片的真实大小
print('window=',window) return image.astype(image_dtype), window, scale, padding print('输入图像尺寸小于max_dim的尺寸')
resize_image(img, min_dim=230, max_dim=280, min_scale=2, mode="square") print('输入图像尺寸大于max_dim的尺寸')
resize_image(img, min_dim=200, max_dim=220, min_scale=2, mode="square") 结果如下:


mask-rcnn代码解读(六):resize_image()函数的解析的更多相关文章

  1. 使用colab运行深度学习gpu应用(Mask R-CNN)实践

    1,目的 Google Colaboratory(https://colab.research.google.com)是谷歌开放的一款研究工具,主要用于机器学习的开发和研究.这款工具现在可以免费使用, ...

  2. [代码解析]Mask R-CNN介绍与实现(转)

    文章来源 DFann 版权声明:如果你觉得写的还可以,可以考虑打赏一下.转载请联系. https://blog.csdn.net/u011974639/article/details/78483779 ...

  3. 论文阅读笔记三十六:Mask R-CNN(CVPR2017)

    论文源址:https://arxiv.org/pdf/1703.06870.pdf 开源代码:https://github.com/matterport/Mask_RCNN 摘要 Mask R-CNN ...

  4. CVPR2019 | Mask Scoring R-CNN 论文解读

    Mask Scoring R-CNN CVPR2019 | Mask Scoring R-CNN 论文解读 作者 | 文永亮 研究方向 | 目标检测.GAN 推荐理由: 本文解读的是一篇发表于CVPR ...

  5. Mask R-CNN用于目标检测和分割代码实现

    Mask R-CNN用于目标检测和分割代码实现 Mask R-CNN for object detection and instance segmentation on Keras and Tenso ...

  6. 目标检测论文解读11——Mask R-CNN

    目的 让Faster R-CNN能做实例分割的任务. 方法 模型的结构图如下. 与Faster R-CNN相比,主要有两点变化. (1) 用RoI Align替代RoI Pool. 首先回顾一下RoI ...

  7. 论文笔记:Mask R-CNN

    之前在一次组会上,师弟诉苦说他用 UNet 处理一个病灶分割的任务,但效果极差,我看了他的数据后发现,那些病灶区域比起整张图而言非常的小,而 UNet 采用的损失函数通常是逐像素的分类损失,如此一来, ...

  8. Mask RCNN 源码阅读(update)

    之前看了Google官网的object_dectect 的源码,感觉Google大神写的还不错.最近想玩下Mask RCNN,就看了下源码,这里刚好当做总结和梳理.链接如下: Google官网的obj ...

  9. Mask RCNN 学习笔记

    下面会介绍基于ResNet50的Mask RCNN网络,其中会涉及到RPN.FPN.ROIAlign以及分类.回归使用的损失函数等 介绍时所采用的MaskRCNN源码(python版本)来源于GitH ...

随机推荐

  1. 848. Shifting Letters

    问题描述: 问题规约为:对每一个数组S,移动(shifts[0] + shitfs[1]+...+shitfs[i] )mod 26位 def shiftingLetters(self, S: str ...

  2. 【JavaWeb】FreeMarker快速入门

    FreeMarker Freemarker是免费开源的模板引擎技术: Freemarker脚本为Freemarker Template Language: Freemarker提供了大量内建函数来简化 ...

  3. Python中 if __name__ == '__main__' 的作用

    Python文件可以直接运行,也可以 import 到其它文件中使用 if __name__ == '__main__' 就是控制代码在这两种情况下的执行过程 每个Python模块都包含内置变量,直接 ...

  4. 博客美化——Silence主题皮肤

    介绍   一款专注阅读的博客园主题,主要面向于经常混迹 博客园 的朋友.其追求大道至简的终极真理,界面追求简洁.运行追求高效.部署追求简单. 博客皮肤源码地址 预览地址 如何部署.使用皮肤 Silen ...

  5. Linux文件基本命令

    Linux文件基本命令学习 操作技巧: 输入文件/目录/命令的前几个字母之后,按下tab键,则自动补全 按上/下,回滚曾经用过的命令 不想执行命令使用:crtl + c 基础命令: ls(查看) 基础 ...

  6. 【PAT甲级】1008 Elevator (20分)

    1008 Elevator 题目: The highest building in our city has only one elevator. A request list is made up ...

  7. JAVA学习方法之——费曼学习法

    理查德·费曼 费曼简介 理查德·菲利普斯·费曼(Richard Phillips Feynman),出生于1918年5月11日,是美籍犹太裔物理学家,曾在1965年获得诺贝尔物理学奖,也被认为是继爱因 ...

  8. c# 第29节 类

    本节内容: 1:类是什么 2:声明类 3:类的使用 1:类是什么 2:声明类 在生产上的声明:如下操作   或者快捷操作 ctrl+shift+a 键 出现如下界面: 3:类的使用 using Sys ...

  9. 第十一周小组Scrum会议

    会议照片 本周会议内 回顾上一周的内容 总结上一轮的得失: 我们在第一轮中,并没有做出什么东西,为此我们痛定思痛,制定了计划,确定第二轮迭代的目标: 1. 实现小程序与后台代码的交互 2. 将检索书籍 ...

  10. 《Zabbix》

    https://github.com/itnihao/zabbix-rpm https://github.com/itnihao/zabbix-book 一.zabbix支持的主要监控方式: zabb ...